
 Advanced search

Linux Journal Issue #37/May 1997

Features

Linux On the PS/2 by David Weis
While still a challenge, it has recently become much easier to
install Linux on a PS/2 with an ESDI drive. Here's how.

Linux/m68k: Linux on the Motorola 68000 Processor by Chris
Lawrence

In the midst of all the attention given to ports to evermore
exotic hardware, it's easy to overlook the first production quality
port: Linux/m68k. The current version is the most stable yet.

Native Linux on the PowerPC by Cort Dougan
Users of the PowerPC no longer have to settle for less—here's
how to run Linux on machines with the PCI bus.

Linux? On the Macintosh? with Mach? by Vicki Brown
The answer is an emphatic yes: Disover MkLinux.

News & Articles

Tcl/Tk with C for Image Processing by Siome Klein Goldenstein
Internet Servers in Perl by Mike Mull
An Interview with DEC by John “maddog” Hall and David Rusling
Safely Running Programs as root by Phil Hughes
LJ Interviews Przemek Klosowski by Marjorie Richardson & Lydia
Kinata
Python Update by Andrew Kuchling

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/037/2037.html
https://secure2.linuxjournal.com/ljarchive/LJ/037/2090.html
https://secure2.linuxjournal.com/ljarchive/LJ/037/2092.html
https://secure2.linuxjournal.com/ljarchive/LJ/037/2093.html
https://secure2.linuxjournal.com/ljarchive/LJ/037/1344.html
https://secure2.linuxjournal.com/ljarchive/LJ/037/2064.html
https://secure2.linuxjournal.com/ljarchive/LJ/037/2105.html
https://secure2.linuxjournal.com/ljarchive/LJ/037/2114.html
https://secure2.linuxjournal.com/ljarchive/LJ/037/2153.html
https://secure2.linuxjournal.com/ljarchive/LJ/037/2153.html
https://secure2.linuxjournal.com/ljarchive/LJ/037/2068.html

Reviews

Product Review FairCom's C-tree Plus by Nick Xidis

WWWsmith

Re-linking Multi-Page Web Documents by Jim Weirich
At the Forge Missing CGI.pm and Other Mysteries by Reuven
Lerner
Book Review World Wide Web Journal by Danny Yee

Columns

Letters to the Editor
Letter from the Editor: Changes at LJ
Stop the Presses Linux and Web Browsers by Phil Hughes
Linux Means Business Connecting SSC via Wirelss Modem by Liem
Bahneman
Linux Apprentice Paths by Lynda Williams
Take Command ncpfs—Novell Netware Connectivity for Linux by
Shay Rojansky
Kernel Korner The “Virtual File System” in Linux by Alessandro
Rubini
Linux Gazette Tips from the Answer Guy by James T. Dennis
New Products
Best Of Tech Support

Archive Index

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/037/0126.html
https://secure2.linuxjournal.com/ljarchive/LJ/037/2027.html
https://secure2.linuxjournal.com/ljarchive/LJ/037/2175.html
https://secure2.linuxjournal.com/ljarchive/LJ/037/2059.html
https://secure2.linuxjournal.com/ljarchive/LJ/037/2197.html
https://secure2.linuxjournal.com/ljarchive/LJ/037/2198.html
https://secure2.linuxjournal.com/ljarchive/LJ/037/2198.html
https://secure2.linuxjournal.com/ljarchive/LJ/037/2219.html
https://secure2.linuxjournal.com/ljarchive/LJ/037/0183.html
https://secure2.linuxjournal.com/ljarchive/LJ/037/1346.html
https://secure2.linuxjournal.com/ljarchive/LJ/037/1354.html
https://secure2.linuxjournal.com/ljarchive/LJ/037/2108.html
https://secure2.linuxjournal.com/ljarchive/LJ/037/2196.html
https://secure2.linuxjournal.com/ljarchive/LJ/037/2193.html
https://secure2.linuxjournal.com/ljarchive/LJ/037/2199.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Linux on the PS/2

David Weis

Issue #37, May 1997

While running Linux on a PS/2 is not the usual choice, it is getting easier.

The PS/2 line historically has not been able to run Linux due to the
Microchannel (MCA) Bus used in it. Technical specifications were difficult to get
from IBM. There has been support available to run Linux on MCA machines
since about 1994, but it was difficult to install and required much patching by
the user. That situation has changed, and MCA machines are relatively easy to
install. Make no mistake, though, if you plan to run Linux on your PS/2, you are
still in for a challenge.

Supported hardware for MCA machines includes 3Com and SMC-WD Ethernet
cards, IBM token ring cards, many SCSI cards and various other cards. Most
lower-end PS/2s have ESDI drive controllers, which are not supported in the
standard Linux kernel. Also, bus differences require the kernel to do other
timing-related functions not necessary on either an ISA or a PCI bus.

This article gives fairly detailed instructions on installing Slackware on a PS/2
with an ESDI drive. It was tested on my 55SX with 4MB of RAM and a 60MB hard
drive. The Slackware CD was NFS mounted from another machine through an
SMC Ethernet card.

Note, this would probably not be a good first installation for anyone. It assumes
familiarity with Slackware, and some steps normally performed by the the
setup program must be done manually.

First, export the Slackware directories.

Before starting, as with any normal Slackware installation, you will need a boot
disk, a root disk and one more disk with device files, a modified fdisk and a
modified LILO. These files are available at ftp://glycerine.cetmm.uni.edu/pub/
slackware/.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Begin by downloading ps2-boot.gz, color.gz and esdi_slack.tgz. ps2-boot and
color must be decompressed; otherwise, you will probably get some errors on
the boot. Next:

cat ps2-boot >/dev/fd0

Then, switch disks:

cat color>/dev/fd0

Then, switch disks:
cat esdi_slack.tgz >/dev/fd0

Be sure to label these disks.

Drive geometry detection does not always work, so you'll need to know your
cylinders, heads and sectors. Below is a table for IBM drives.

size command line
30 MB
60 MB ed=58,64,32

Insert the Boot disk and turn on your machine. When you get to the LILO
prompt enter ramdisk ed=58 (or 64 or 32—choose appropriate geometry).
Watch the kernel messages go by to see if your hardware was properly
detected. Your machine may seem to hang while resetting the ESDI drive, but it
can take up to 15 seconds. Eventually, you will get a login prompt. Log in as
root. Run fdisk /dev/eda (the first ESDI device). Delete all the partitions on the
drive. Now you will need to make a root partition and a swap partition. For the
60MB drive, I recommend 50MB for the root and 8 for the swap partition. To
set up the partitions, pick: new partition, primary partition, 1st primary
partition, start at cylinder 1, end at cylinder 50. This is your root. Now pick: new
again, primary partition, 2nd primary partition, start at cylinder 51, and end at
cylinder 58. Also select “change the type of partition 2 to 82 (Linux Swap)”. Print
the partition table to make sure there are no obvious problems. Check how
many blocks are in the swap partition, because you will need that information
later. With the numbers above it should be 8192. Go ahead and write it to disk.

If your machine is like mine, it doesn't have a lot of RAM installed. In order to
run the setup program you will need to activate the swap partition. To do that,
run mkswap /dev/eda2 (number of blocks). After some disk activity, run swapon

/dev/eda2. Now your machine is ready for the setup program.

Run setup, the Slackware install program. Choose to add a swap partition. It will
find the /dev/eda2 partition itself. Be sure to pick “no” when asked to run
mkswap or swapon. Running these twice will cause problems. Now select the
target device. Once /dev/eda1 is located, you will need to format this partition.

Accept the defaults you are given. After a while, you will be asked about
installation media. I have chosen NFS, because I am allergic to swapping
floppies, but you can try it if you want.

In order to do an NFS installation, you will need an IP address for your machine
and the machine with the Slackware disks on it. You will also need to know
where the files are located on the mount. If you have mounted a CD containing
Slackware on /cdrom with the disks in distributions/slackware, you would
export the /cdrom/distributions/slackware directory. In the event you don't
have a CD, look forward to downloading. I recommend installing the A and N
series for now. It is unnecessary to install any kernels or source, since they
won't run on this machine. Go take a break while the installation program is
running—brag to your friends about what you are doing, have a pop, etc.

When that step is completed, you are asked to install LILO. Do not do this yet.
Follow the normal steps until you are asked if you want to exit. Go ahead. The
setup program does not correctly set up the /etc/fstab and /etc/lilo.conf files, so
you need to do that yourself. Printed below are the proper commands to type
at the shell prompt. Note the append line is the one you first typed with the
boot disk.

cat <<EOF >/mnt/etc/lilo.conf
 append="ed=cyl,head,sec"
 boot=/dev/eda
 vga=normal
 ramdisk=0
 timeout=50
 prompt
 image=/vmlinuz
 root=/dev/eda1
 label=linux
 read-only
EOF

Mount the boot disk you used to start the machine. You can use the /cdrom
mount point, like:

mount /dev/fd0 /cdrom

Copy the kernel from the floppy disk to the hard drive:
cp /cdrom/vmlinuz /mnt/vmlinuz

The LILO installed by setup does not recognize the major device number 36
that the ESDI drives use, so at this point, get out the disk with esdi_slack.tar.gz
on it, put it in the floppy drive and type:

cd /mnt
tar zxvf /dev/fd0

You will get some error messages, but ignore them. To install LILO, type:
lilo -r /mnt -C /etc/lilo.conf

The arguments tell LILO the disk with the configuration is mounted at /mnt.

The file system table, /etc/fstab, is still not set up correctly, so you will also need
to execute:

cat <<EOF >/mnt/etc/fstab
/dev/eda1 / ext2 defaults 1 1
/dev/eda2 none swap swap 0 0
none /proc proc defaults 0 0
EOF

At this point the system is ready to be rebooted. Be sure to unmount the floppy
and press CTRL-ALT-DEL. If the machine does not reboot after about a minute,
you will need to cycle the power yourself. Be patient with your system. The ESDI
drive is pretty slow. The system should reboot into LILO and start up Linux.

This is still not an exact science. You may have troubles with the partitioning
depending on how the drive was formatted before. I've found installing DOS on
it will usually make the drive conform to the cylinders, heads and sectors you
enter on the append line instead of the physical geometry.

References

David Weis (weisd3458@uni.edu) is a computer science student at the
University of Northern Iowa. His favorite things to do include spending time
with his girlfriend and solving problems using Linux.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/037/2037s1.html
mailto:weisd3458@uni.edu
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/037/toc037.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Linux/m68k: Linux on Motorola's 68000 Processor

Chris Lawrence

Issue #37, May 1997

Here's the scoop on the porting of Linux to the Motorola processors.

“Linux is NOT portable (uses 386 task switching etc.), and it probably never will
support anything other than AT-hard disks, as that's all I have.” --Linus Torvalds,
August 25, 1991.

In the five years since Linus wrote those words, Linux has been ported from its
Intel roots to a number of other architectures: the ports to the Alpha and Sparc
processors are probably the most familiar to readers of Linux Journal. In all the
attention given to ports to ever more exotic hardware, it's easy to overlook the
first production quality port: Linux/m68k.

The “m68k” stands for the Motorola 68000 series of processors, found at the
heart of popular computers like the Apple Macintosh, the Amiga, the Atari ST
and its successors (the Atari TT, Medusa and Falcon), as well as the Sun 3, NeXT,
Hewlett-Packard/Apollo Domain workstations and others. The MC68020 (with
the MC68851 memory management unit), MC68030, MC68040, MC68LC040
and MC68060 are the only CPUs in the 68000 family supported by Linux/m68k,
because Linux (like other Unix-like operating systems) requires a memory
management unit (MMU) for protected and virtual memory support. A floating
point unit is optional, but recommended. Floating point emulation is not
distributed in the main kernel tree, since its copyright conflicts with the GNU
General Public License.

Like Linux/i386, 4MB of RAM is the absolute minimum, with 8MB being
sufficient for most uses. The X Window System requires a minimum of 12MB of
RAM for a usable system. A minimal installation currently requires about 55MB
of hard drive space, plus at least a few MB of swap space. My personal system
currently has about 830MB of hard drive space devoted to Linux (one SCSI hard
drive and most of two IDE hard drives). When it comes to RAM and hard drive
space, you can never have too much.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Linux/m68k started out as a port of Linux to work only on the Amiga. Hamish
Macdonald and Greg Harp released their first version, which they called 0.05, to
the public on July 1, 1993. This version was based on Intel Linux 0.99pl9. Soon
after that release, several groups of Atari users working independently made
the first efforts to adapt the port to that platform. The two ports were merged
into one tree starting with 0.9 in July of 1994, with many new features like
Ethernet, frame buffer and X Window System support arriving with 0.9pl5 later
that year. Further efforts were made to combine some of the advances of the
Linux/i386 1.0 and 1.1 series, including ELF support, into the Linux/m68k 0.9
series, culminating in 0.9pl13. Roman Hodek took over maintenance of 0.9
while Hamish started work on catching up with Linux/i386, then approaching
the 1.2 release.

The adaptation of Linux/m68k to the general 1.2 kernel was a difficult process.
From the first public release (1.2.10), there were 13 patch levels in 11 months
(the final release was known as 1.2.13pl10). The format of ext2fs used under
Linux/m68k was changed twice (once from 0.9.13 to 1.2.10, and again in
1.2.13pl4). Overall, the 1.2 series saw Linux/m68k mature into a usable system;
major improvements were made in X support, and a color display was
implemented on the Amiga.

By the time Linux/m68k 1.2 became stable, however, the rest of the Linux
community was moving ahead at a rapid pace. Hamish again turned over a
usable kernel to Roman and did some very preliminary work on the 1.3 series;
Jes Degn Sòrensen adopted the 1.3 source tree in the Autumn of 1995 and
began coordinating the work on it. After the initial hurdles of getting the basic
code working, progress came quickly. The first working 1.3 series kernel (1.3.23)
was released in late February 1996, and was brought into sync by early April (to
1.3.86, one day after the release of Linux).

The current, stable Linux/m68k version is 2.0.28. Development of Linux/m68k
continues unabated, with the recent 2.1.17 development release of the main
kernel integrating over several hundred kilobytes of changes from the Linux/
m68k tree.

As of Linux/m68k 2.0.28, the latest release of the production 2.0 kernel, the
Amiga and Atari are directly supported. Users of Motorola VMEbus systems (the
MVME 162, 166 and 167) can use an earlier release, 2.0.8. Porting efforts are
underway for the Sun 3 and Hewlett-Packard/Apollo Domain workstations and
the Apple Macintosh. There has also been some interest in a port to the NeXT
workstation.

Compatibility between Linux/m68k and Linux/i386 is very high at the source
level. Almost all programs that don't use Intel-specific optimizations (like -

m486), assembler code, SVGAlib or /dev/port should work “out of the box”.
Notable exceptions are programs that expect the proc file system's data to be
in a specific format (such as /proc/interrupts, which on Linux/m68k can contain
any number of interrupts, including shared interrupts). Almost all of the GNU
project's software has been tested and used successfully on Linux/m68k, as
have the popular Perl, Python and Tcl programming languages and free Web
browsers including Arena, Chimera, Grail, Lynx and Mosaic.

As of this writing, no commercial software available for Linux/i386 has been
recompiled for Linux/m68k, nor has most other software released without
source (with the notable exception of the XForms library). The primary
obstacles are as follows:

1. There is no SVGAlib support on Linux/m68k.
2. There is no true Motif port to Linux/m68k. Motif 1.2 has been successfully

compiled and used under Linux/m68k, but the individual who did that
work doesn't have a license to sell Motif.

Unlike Linux on Intel and Alpha, there is no standard video hardware under
Linux/m68k. The Amiga and Atari video chip sets are fundamentally different,
as are the various graphics adapters available for both systems. Linux/m68k
gets around this problem by using the Universal Framebuffer (UFB) device. This
term is misleading, since it is used only on Linux/m68k at this point; but there
are plans to merge it with the SparcLinux Framebuffer later. The UFB device
abstracts the hardware interface to support a relatively simple, device- and
system-independent programming interface. An easy-to-use user-mode library,
known as oFBsis, is under development as part of the OSIS project to emulate
the Atari TOS environment. One side effect of the UFB approach is virtually all
Linux/m68k binaries are compatible with all Linux/m68k platforms. For
example, the XFree68 server binary can operate all of the display hardware
supported by Linux/m68k on both the Atari and Amiga. Even the kernel can be
compiled to run on both Ataris and Amigas, and was distributed this way until
the 2.0 series, when the number of devices needed for each OS made the
combined kernel too large for users with only 4 MB of RAM. More programs
supporting the UFB interface are forthcoming.

One of the most exciting developments in recent months is the port of the
Debian distribution to Linux/m68k. Debian/m68k is currently in beta testing
and will be released in tandem with the next Debian release. Most users
currently install Linux/m68k manually using a number of tar files known as the
Watchtower-2 file system, a fairly complicated procedure for those not familiar
with Unix. There is also an older distribution, based on the 1.2 series kernels,
called ALD, available for Ataris on CD-ROM. A proper distribution for both
platforms, with support from Amiga and Atari CD-ROM vendors, in addition to

the Linux CD vending community, would help make Linux a viable alternative
operating system for serious Amiga and Atari users. At present, the only CD-
ROMs available are the ALD CD-ROM and Infomagic's quarterly Linux
Developer's Resource 6 CD set.

With the disappearance of the Amiga and Atari commercial developer
communities over the past few years, many users have turned to the Free
Software Foundation's GNU project for the tools they need. Unfortunately, the
Unix heritage of the FSF tools causes problems for Amiga and Atari users who
must contend with conflicting file naming formats, weak integration with the
underlying OS, and memory-hogging emulation libraries. Linux and other free
Unix-like operating systems can provide an environment suited for running
these tools, with features like memory protection and virtual memory built-in,
at minimal cost.

Substantial progress is underway to run well-behaved Amiga and Atari
programs under X. The OSIS project, mentioned above, is usable for many Atari
TOS applications already; AmigaOS emulation is also available but slow (via the
Un*x Amiga Emulator), with faster support for programs that run within
AmigaOS rules being worked on under both UAE and the AmigaOS
Replacement OS (AROS). Full-speed Macintosh emulation should also be
possible as it is under AmigaOS, but as yet, no one has demonstrated it. Binary
compatibility with other Unix-like operating systems on Motorola platforms
(similar to iBCS on Intel) is another area that could be developed further and
may follow with the Sun 3 port. More emulation support is expected once
Linux/m68k becomes easily accessible to Amiga and Atari users and their large
freeware authoring communities.

Support for expansion devices under Linux/m68k is rather limited at present.
Virtually every Ethernet card ever designed for the Amiga and Atari is
supported, but only a relative handful of other devices are supported at
present. However, many of them—like the Commodore A2091 and GVP SCSI
controllers—are among the most common or—like the SCSI options for the
Phase 5 accelerators—the most recent. The relative lack of people with
hardware knowledge in the Linux/m68k community has slowed development in
this area. With the wider popularity of Linux/m68k that should result after the
Debian distribution is released, the dearth of technical expertise should
become less of a setback as more people with hardware knowledge join in the
development process.

While it is difficult to judge the popularity of other Unix-like operating systems
on the Amiga and Atari (primarily NetBSD and OpenBSD), the Linux/m68k
Registration Site seems to be a fairly accurate measure of Linux/m68k users.
According to the site, well over 400 people use Linux/m68k at least some of the

time. Our Registration Site is prominently advertised at most of the web pages
devoted to Linux/m68k, and Geert Uytterhoeven, its maintainer, posts regular
messages to the Linux/m68k-related newsgroups with statistics and a
registration form. Registrations can be made using a Web-based form at the
site, through e-mail or via snail mail. Despite these efforts, many users of Linux/
m68k who only occasionally have or do not have Internet access remain
unregistered. It is hoped that vendors of Linux/m68k distributions, once they
become available, will help publicize the registration site.

The Web has become an increasingly important source of Linux/m68k
information. Over a four-day period around Christmas, 350 visits to the primary
site of the Linux/m68k Home Pages were recorded. The registration site also
receives hundreds of visits per week. The Frequently Asked Questions file and
installation guides for Amigas, Ataris and VME systems are available on the
Web. Other Linux/m68k pages are available in French, German, Italian and
Portuguese. Coupled with the very active developers' mailing list and the Linux/
m68k-related newsgroups (in both English and German), users are well-
supported with solid information and quick responses from the Linux/m68k
user and developer communities.

As most of the developers reside in northern Europe, they have met a couple of
times in person. The Linux/m68k project is in many ways a microcosm of the
larger Linux project, bringing together people from across the world in pursuit
of a common goal. A recent poster to comp.os.linux.m68k commented that the
68000-series processor has many years of life ahead of it. Those of us who
work to promote Linux/m68k hope to keep the Motorola 68000 a viable
platform for serious computing. With Linux/m68k, you can put together a
complete Linux system for well under $1,000. So before you rush out and buy
that $8,000 Alpha, dig through your closet, find that old processor, install Linux/
m68, and have a computer with the same functionality for a lot less money.

Table 1

Chris Lawrence is a senior Computer Science major at the University of
Memphis who has used Linux/m68k on his 68040-based Amiga since February
of 1995. He moonlights as a salesman for an Internet service provider, is also
known as LordSutch at New Moon (a multi-user dungeon at telnet://

https://secure2.linuxjournal.com/ljarchive/LJ/037/2090t1.html

eclipse.cs.pdx.edu:7680/) and mostly leaves kernel hacking to the professionals.
He can be reached at quango@themall.net or in care of Linux Journal.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/037/toc037.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Native Linux on the PowerPC

Cort Dougan

Issue #37, May 1997

This quick and non-technical look at Linux on the PowerPC by Cort Dougan, a
programmer working on the port, shows it is a reasonable alternative to Linux
on the Intel.

Looking for a better operating system for your PowerPC machine? If you're
reading Linux Journal, chances are you've already found one. The PowerPC-
based machines from Apple, Motorola and IBM offer some competition to Intel
and DEC Alpha-based PCs. The PowerPC is a well-designed processor with a
well-made box, and since it uses the PCI bus, it can use most of the PCI cards
made for the Intel PCs. Even better, PowerPCs run Linux.

Where PowerPC Linux Is Now

The PowerPC (PPC) processors are produced by IBM, Apple and Motorola in a
joint venture. The vast majority of PPC computers are PowerMacs and
PowerMac clones. Both IBM and Motorola make PowerPCs based on the PREP
standard. Motorola also makes Mac clones. IBM is now using the PowerPC in its
RS6000 and 830 class of machines and in one of its larger computers—the
AS400. There is even a version of the IBM portable, the Thinkpad, that is
PowerPC-based. The PREP-based machines all look pretty much the same to
the operating system, and that makes supporting them all easier. The
PowerMac, however, is not PREP-based. Native Linux runs on all of these
machines except the AS400 and the older PowerMacs based on the NuBus. Our
aim is to be able to run PowerPC Linux on every PowerPC system available.

There are three versions of Native PowerPC Linux, as well as Apple's version of
Mach with a Linux personality (MkLinux)--all developed by separate groups. All
the native versions of the port started from early work by Gary Thomas. By the
time this article is published, we hope the various native versions will have

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

been merged into one. As things stand right now (in late January), the three
versions are:

1. http://www.linuxppc.org/--A version of Linux 2.0 for Be, Motorola and IBM
machines by Gary Thomas. This version includes some kernel support
from the MkLinux project. More information can be obtained by writing
g.thomas@osf.org.

2. http://www.cs.nmt.edu/linuxppc/--A version of Linux 2.1 that runs on the
Motorola and IBM workstations from New Mexico Tech. This is the one
found in the main Linux source distribution. More information can be
obtained by writing cort@cs.nmt.edu.

3. ftp://cap.anu.edu.au/pub/--A version of Linux 2.1 that runs on the
PowerMac from Paul Mackerras. More information can be obtained by
writing paulus@cs.anu.edu.au.

Currently, we are integrating the New Mexico Tech port (for Motorola and IBM
machines) with Paul Mackerras's version (for PowerMacs) in order to support
all PowerPC machines from one source tree.

The standard utilities, like Emacs, awk, Perl, bash, Ghostview and TeX, all
compile and run just as on any Linux port. Network support is complete—NFS
server and client, FTP server and client, slip, ppp, tftp boot servers, xntp and
other network services all work. X runs on the IBMs with the S3 card and on the
Macs. (It's quite snappy on my IBM 830.) In fact, this document was prepared in
its entirety under PowerPC Linux using X, Ghostview, LaTeX, and Emacs.

PowerPC Linux is very stable, and I'm using it as a development platform for
the kernel. I've had uptimes as long as two weeks with a reboot only to update
to a newer kernel. The infamous “crashme” test has run for over 12 hours on
our machine, and improvements are still being made. Lmbench shows the
system runs pretty quickly too.

Linux performs very well in comparison with AIX on the PowerPC. It also runs
well in comparison to Linux on the Intel when tested with lmbench. The
numbers in Listing 1 are the arithmetic mean of the results from 10 runs with
lmbench-1. 0 (except on the PowerMac where the results are of a single run).
Up-to-date lmbench numbers, crashme results and bug-fixes are kept at http://
www.cs.nmt.edu/linuxppc/.

Support for other video cards will be finished shortly. Early versions of shared
libraries are working on Thomas's version. They're a high priority, and so will be
completed soon. Kernel modules were working up to early versions of the 2.1
kernel, but with the recent changes to the modutils, there are minor problems
to be worked out. It will not be long before modules work again.

https://secure2.linuxjournal.com/ljarchive/LJ/037/2092l1.html

There is a PowerMac version of LILO (named MILO) that boots MacOS and
Linux, but there is no such program for the PREP platforms yet. A boot loader is
not yet a high priority, but having one would certainly help in the debugging
process—booting new kernels quickly becomes tedious without LILO. LILO is
also necessary for users wishing to boot PPC Linux and another operating
systems.

Since most PowerPC systems use the PCI bus, PCI cards that work on the Intel
PCs work on the PowerPC systems. There are many Linux drivers written for
PCI devices, and so adding support for more devices is easy. Most drivers need
only minor modifications to work on the PowerPC. Usually we just need to
change the “endianness” of the drivers. Most device drivers in Linux assume a
little-endian CPU, and since the PowerPC is running big-endian, most drivers
need to change the format of the data sent to the device. As changes have been
made, the authors have been given copies for inclusion in the standard Linux
tree. Luckily, the PowerPC is not the only Linux port to a big-endian machine.
The Sparc runs big-endian and must deal with the same issues and fix the same
problems, so we're not alone in needing and making these changes.

As of right now, the list of working drivers includes the serial interface, PS/2
mice, EIDE hard drives (CD-ROMs are buggy), the NCR 53c8XX SCSI controller
(all SCSI devices working), standard floppy, DEC Ethernet cards (de4x5 driver)
and Lance Ethernet cards. Supported on the PowerMac are the MACE Ethernet
interface, ADB mouse/keyboard and the MESH and 53C96 SCSI controllers.
Mark Scott at Motorola has configured the PowerStack to support audio, but
none of the other sound devices on any of the architectures are supported yet.
The EIDE CD-ROM support has bugs and needs more work—neither video input
nor output works. Patches from users who have other hardware are welcome.

Where PowerPC Linux Is Going

Linux on the PowerPC is a stable and robust development environment. What
we need is more users installing it and beginning the work on driver
modifications and other missing features. Linux benefits from the work of
many programmers across the globe, and PowerPC Linux hopes to have the
same advantage.

At this time, making the kernel bullet-proof is the highest priority. Second is
speeding it up. After all, a fast kernel that crashes is just a kernel that crashes
quickly.

I'd like to take Real-Time Linux, developed here at New Mexico Tech, and make
it work on the PPC. The PowerPC makes real-time features easier than the
80x86 with better timer and simpler interrupt interfaces. Integrating with RT-

Linux could even serve to optimize the kernel by using soft disables for
interrupts rather than costly hardware disables.

As soon I have access to a symmetric multi-processing (SMP) PowerPC machine,
I'll begin work on SMP, since there is no support for PowerPC SMP machines
now.

The distribution of PPC Linux currently consists of a boot floppy image for the
installation, a root floppy image, a file system tar file and a final boot image for
the hard disk. Detailed instructions and the associated files for an installation
can be found at ftp://ftp.nmt.edu:/pub/people/cort/. This installation is clumsy
and requires a network with an NFS server or a tape drive. This isn't as practical
as it could be and leaves much room for improvement. The Red Hat package
management tools are compiled and work, but they are not yet directly
supported by Red Hat; therefore, only the RPM source packages work.

There is no support in PPC Linux for emulating operating systems other than in
the PowerMac version, which runs MkLinux binaries as long as they don't make
Mach system calls. Other than limited MkLinux support, there are no plans for
adding emulation. Support for PowerPC AIX binaries would not be very difficult,
but since there are few applications for PowerPC AIX that users would want,
adding support would not be worthwhile. However, a stronger case can be
made for emulation of MacOS and Windows. There are many applications for
both MacOS and MS Windows that users would want to run under PPC Linux.
Perhaps MacOS and Windows emulation for the PowerPC could be taken up by
others as a project similar to Wine and DOSemu.

Getting Involved

There is still a lot of work to be done in many areas of the kernel and at the
user level. Device drivers need to be modified and tested to translate from a
big-endian CPU to the native format of the device. There are very few devices
supported now, and I don't have access to them all to do the work. People with
hardware they'd like to see supported and an interest in doing some kernel
hacking are needed for this project. Even users who don't want to write code
can help by testing kernel changes.

People interested in running PowerPC on their workstations are also needed.
Different PowerPC machines are needed to test and verify the system works on
as many of the PowerPC machines as possible. People willing to help add
support for their own machines would be even better.

X needs changes to support more video cards, and the changes should be
integrated with standard XFree. I'm rather keen on the idea of a PPC Linux
Netscape as well. Linus Torvalds urged the idea of Linux as a “fun” system at

the 1997 Usenix Technical Conference; as an example he cited his work to port
Quake to Alpha Linux. Perhaps someone with an interest could take up this
cause.

A PowerPC version of LILO that works on the PowerMac and other PowerPC
platforms would be very useful. Currently, we only have a PowerMac version,
and work on a PREP LILO could begin using the PowerMac version.

Glossary

Cort Dougan is a graduate student at New Mexico Tech and splits his time
between his graduate work, PowerPC Linux and hydroponics farming. He can
be reached via email at cort@cs.nmt.edu.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/037/2092s1.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/037/toc037.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Linux? On the Macintosh? With Mach?

Victoria L. Brown

Issue #37, May 1997

Discover MkLinux—what machines it runs on and what it will do when it gets
there.

So, Why Linux?

Need you ask? Linux is the overwhelming favorite among users of free Unix
clones. Linux provides Unix features such as true multitasking, virtual memory,
shared libraries, demand loading, TCP/IP networking and many other advanced
features. Versions of Linux have been ported to a wide variety of platforms,
including other PowerPC-based computers, making the Power Macintosh port
that much easier.

The Linux community is large, growing, active and involved. This community
promotes development and exchange of software and ideas, making it an
excellent environment for a new OS product. And, last but not least, Linux is
covered by the GNU General Public License, ensuring Apple's contributions will
not be used in some other vendor's proprietary product.

Why Power Macintosh?

You may be asking yourself, “Why would I want to run Linux on a Power
Macintosh?” After all, the Linux community is overwhelmingly oriented toward
Intel hardware. Why change?

For one thing, it's good for Apple and Apple enthusiasts. As noted above, Linux
opens the door to a new Macintosh market. Many researchers and scientists
who might well find the Macintosh a useful tool, cannot justify the purchase of
a second computer system. If their shop runs Unix, a Macintosh just didn't fit in
—until now.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

University laboratories and dorm rooms are another target. With the
availability of MkLinux, users can benefit from the best of both worlds: using
Linux for research and batch data processing and MacOS for graphical
applications, desktop publishing, and much more. So, Apple may sell the
machine, but you get the fun. Think of all those cool MacOS applications just
waiting to be explored, not to mention the joy of using the Power Mac's
multimedia capabilities under MkLinux.

In keeping with Apple's traditions, the highly integrated Power Macintosh
hardware greatly eases Linux system administration. Power Macs are delivered
as complete systems. Thus, a Power Macintosh normally can run MkLinux
straight “out of the box”, without the addition of cards, chips and other
components. Because Power Macs use an intelligent bus such as NuBus or PCI,
the OS can deal with hardware configuration concerns such as DMA addressing
and interrupt vectors.

In fact, as we tell folks at trade shows: “Once you've installed it, MkLinux is
really just Linux. You'll have to give up a few things, of course—DMA vectors,
IRQ settings, jumpers, incompatible BIOS code—but basically, it's just Linux...”

Although MkLinux, Apple Computer's Microkernel Linux for the Power
Macintosh, has been under development for a few years, it has been available
to the general public for only a short while. Apple's first public announcement
concerning MkLinux was made at the Free Software Foundation's First
Conference on Freely Redistributable Software (February 1996).

Apple announced it was supporting a project with the Open Software
Foundation (OSF; now merged with X/Open to form the Open Group) to port
Linux to a Mach base and to port Mach to a variety of Power Mac products. The
project was initiated, sponsored and funded by Apple Computer.

OSF provided the Mach 3.0 Microkernel (developed by Carnegie Mellon
University and the OSF Research Institute) and the engineering team to port the
code. (An OSF paper on MkLinux—“Linux on the OSF Mach 3 Micro-kernel”—
was presented at the conference.)

Apple's February 1996 announcement predicted the first port of MkLinux would
become available in the summer of 1996. Exceeding expectations, the first
general release of MkLinux, Developer Release 1 (DR1), became available in
May. MkLinux DR1 was followed by DR2, released in September 1996. DR3 is
scheduled for release in early spring of 1997.

MkLinux releases tend to incorporate large numbers of changes. Hundreds of
megabytes of new or changed material must be acquired, whether by FTP or

CD-ROM, typically requiring a complete re-installation. Consequently, full
MkLinux releases are made on a relatively infrequent basis (only when
warranted by a sufficiently large or fundamental set of changes).

Between releases, Apple issues minor updates via FTP. Some updates provide
bug fixes; others introduce new or experimental features. In either case, they
are meant to be used with a specific MkLinux release.

What Is MkLinux?

At this point, you may be wondering exactly what MkLinux is. Does it run the
MacOS Finder? Does it run X11? Are all the commands I know and love
available? For that matter, how is the name itself pronounced?

First things first: MkLinux is officially pronounced “em-kay” Linux, but is often
pronounced McLinux. This is in line with Linux tradition, which permits Linux
itself to be pronounced in any of several ways. (Li-nucks, Li-nooks, Lie-nooks
and even Lee-nooks are quite commonly heard.)

In any event, MkLinux is a complete port of Linux, with a full set of GNU tools
and accessories, including X11R6, which runs on top of the Mach micro-kernel.
Hence, Mk (Microkernel) Linux. Because MkLinux is really just Linux, it doesn't
run the Finder—yet. On the other hand, it does run just about any Linux
command you could imagine. (Commands that require Intel-based hardware
are, of course, impossible.)

A Mach Primer

The Mach Microkernel provides an abstract layer onto which other operating
systems can be ported. It also provides multiprocessor support, kernel-level
thread support, distributed and cluster computing, and other interesting
features. By porting Mach to the Power Macintosh, Apple has cleared the way
for a variety of research and even commercial operating systems to run on the
platform.

The Mach 3 Microkernel was developed at Carnegie Mellon University. Since
then, it has been extensively enhanced by the Research Institute. MkLinux
currently uses Mk6.1, a variant of the Mach 3.0 Microkernel, but there are
prospects for using a more advanced Microkernel.

The Mach Microkernel performs only a small set of functions. It handles
interprocess communication, low-level I/O (that is, access to SCSI and other
busses), memory management and scheduling. Higher-level functions (file
systems, networking, etc.) are performed by one or more “servers”. Mach
servers are user-mode processes that provide all or part of an operating

system's “personality”. They do not talk directly to the underlying hardware; in
general, no Mach process does that. Instead, they communicate with the Mach
Microkernel by means of “messages”.

Thus, when cat performs a write system call, the interrupt is caught by the
Mach Microkernel. The relevant information is then packaged into a message
and passed to the appropriate server. Several actions, interrupts and messages
may then take place, involving only the Microkernel and the relevant server(s).
Only when the write has been accomplished (or fails), does the Microkernel
restart the cat process.

In MkLinux, as in nearly all Mach-based systems, the OS personality is provided
by a “single server”. This is Mach terminology for a single process that handles
all of a given operating system's personality. The FSF's Hurd, also based on
Mach, uses a “multiple server” design, with a small number of processes
sharing the OS duties. The MkLinux project team have received some interest,
by the way, in merging the Hurd into MkLinux.

The MkLinux Server

The server MkLinux uses looks much like a standard Linux kernel. In fact, it is a
copy of the Linux kernel that is modified to use Mach's low-level functionality.
In the first two Developer Releases, the MkLinux server was based on Linux
1.2.13. Updates to DR2, however, as well as the new DR3, are based on Linux
2.0.23. This kernel provides several new features, along with improvements in
performance and stability.

Operating system developers will be pleased to know 2.0-based MkLinux allows
more than one (e.g., Linux or Hurd) server to run at the same time. This is
extremely convenient to anyone who wishes to debug a new server.

With this capability, you can start up the debug version alongside the
production version. If (or when) the debug version goes down in flames, the
system just continues to work, saving you a great deal of time and trouble. Not
only that, you can simply fire up gdb and debug the second server as you would
any ordinary application.

Linux Goodies

Operating system elitists (read, some kernel hackers) may disagree, but the rest
of us know a kernel, however wonderful, isn't enough. We need more: shells,
utilities, a window system, and all those other little toys we've grown to love.
Don't worry; MkLinux has everything you've come to love in Linux.

Based largely on the Red Hat Linux distribution and making heavy use of the
Red Hat Package Manager (RPM), the default MkLinux installation includes a full
set of user commands, as well as the complete X11R6 window system. Many
other commands are available in RPM archives, either on the installation CD or
by anonymous FTP.

In fact, a complete MkLinux system is anything but small or spartan. Even the
Developer Releases are quite substantial. (The Installation Guide recommends
16 MB of RAM and at least 500 MB of dedicated disk space.)

GNU... And Apple?!?

We have to admit, Apple and the GNU Project have had their differences in the
past. Nor can we suggest Apple has given up on the idea of proprietary
software. So, it comes as a surprise to many (and a shock to some) that Apple is
openly funding a project to develop MkLinux and port it to the entire family of
Power Macintosh systems.

Not only that—except for the chance to sell more Power Macintosh systems (a
strong inducement indeed), Apple is not making any profit from the MkLinux
port. Distribution and sales of the Apple-endorsed CD-ROM are handled by
third parties (e.g., Prime Time Freeware).

In full compliance with the best freeware etiquette, Apple is releasing the
source code for all of their Linux and Mach changes under the appropriate
(GPL, OSF, and so on) licenses. The entire distribution, in fact, is available via
anonymous FTP. Third parties are encouraged to mirror the site, create their
own CD-ROM distributions, or share the software with their friends. This is free
software at its finest.

What About Intel?

By porting MkLinux to the Power Macintosh, Apple opens the doors for a new
market, but that's only half the story. As a bow to the Linux community's Intel
orientation, Apple has also made sure an Intel port of MkLinux is available. In
fact, the MkLinux/Intel port was developed first and was completely funded by
Apple. The Intel port is tracking the Power Macintosh version; although you
may not see it prominently displayed on the Apple Web pages, it's still quite
alive.

By also porting MkLinux to the Intel platform, Apple opens the door for Intel
and Power Macintosh users to try each other's systems, trade software and
ideas, and generally enlarge the Linux world. For instance, we expect some
valuable and interesting interchange in PCI driver software and multimedia
applications.

Nitty Gritty Details

Okay, you're almost convinced. You understand why Apple is funding a Linux
project, and you've begun to believe in Linux on the Power Macintosh. But it's
still called a Developer Release. How complete is MkLinux? Are all Power
Macintoshes supported? What's there, and, perhaps more important, what's
not there? The following summary describes the MkLinux DR2 release with all
posted updates through early January, 1997.

The first two MkLinux Developer Releases were fairly complete in terms of the
base operating system and command set, but were still lacking in a few areas.
As noted above, these versions were based on Linux 1.2.13, a somewhat dated
version of the Linux server. Linux 2.0 support has recently been added,
however (officially, as of the December 1996 update). The MkLinux kernel
changes have been sent back to Linus Torvalds for inclusion in the next
revisions of Linux; we believe we'll be in sync from now on.

From the beginning, MkLinux has had full SCSI support, including the ability to
mount (and eventually boot from) removable disks such as Iomega's Jaz drive. It
supports a wide range of monitors connected to the motherboard video or the
HPV and A/V cards. It includes serial support for DMA and modem control, plus
support for SLIP and PPP connections, as well as Ethernet. X11R6 supports a
wide range of multiple-button pointing devices as long as they conform to
Apple's Desktop Bus (ADB) protocol.

Several things are still missing, to be sure. Both audio and floppy disk support
are still in development. Serial support does not yet extend to printers. At this
writing, multiple monitors are not supported; in fact, no NuBus or PCI Bus cards
are supported yet. Shared libraries are almost ready; these should be available
for Developer Release 3.

To the dismay of many early adopters, MkLinux lacked support for most
current Power Macintosh models. DR1 and (as shipped) DR2 supported only
the Nubus-based, PowerPC 601-based systems (Power Macintosh 6100, 7100,
8100 series, Power Computing 100 and 120 clones). As these Power Macintosh
models were discontinued shortly before MkLinux was first announced, it was
impossible for users to buy a new system for MkLinux.

Following the release of DR1, however, the Apple MkLinux Team posted a
survey, asking the MkLinux user (and prospective user) community to help
choose the next set of machines to be ported. Not surprisingly, the
overwhelmingly popular choice was the latest and fastest family of machines—
the PCI-bus, PowerPC 604-based chip systems (Power Macintosh 7200, 7500,
8500, 9500, and clones).

Things always take longer than hoped; DR2 was released in September, still
without PCI support. We promised support by Christmas, however, and
managed to keep our promise. The DR2 update in mid-December contained
(beta) support for the aforementioned PCI-based machines, rolled in the 2.0
Linux server, and was a major hit with our long-waiting and patient MkLinux
fans.

With PCI support well underway, the team can concentrate on supporting the
remaining systems (primarily Performas and Powerbooks) and begin to think
about the upcoming CHRP (Common Hardware Reference Platform) systems.
The only difficult decision will be which to implement first.

Unfortunately, although many machines seem similar on the surface (and
Apple's System Software teams do an excellent job at making them look the
same!), they're really all a little bit different inside. So, it may take a while... but
rest assured, the team is committed to making MkLinux available on all of the
Power Macintosh platforms in time.

The History and the Team

MkLinux was started as the dream of Brett Halle, then manager of Apple's
kernel team within the Modern OS department. With the blessings of Apple
Vice President Ike Nassi, Brett began sponsoring a handful of OSF Research
Institute employees to port the Mach 3.0 Microkernel, and Linux, to the first
Power Macintosh platform. Several months into the project, the first Apple
engineer, Michael Burg, came on board to work part-time on the MkLinux
effort.

Shortly before the DR1 release, Apple decided the project was worth a little
more backing and spun the two Apple employees (Halle and Burg) off into their
own, dedicated team. What became Apple's Leveraged Technologies Group is
now up to five employees, with three more engineers at the Research Institute
and hopes for reasonable growth in the future.

Unfortunately for our anxious and growing body of MkLinux fans, this is still a
very small team. While we concentrate on porting to the next series of Power
Macintoshes, keeping our Web pages and FTP site up to date, and managing
the whole project, many interesting developments are “resource-limited”.
Fortunately, this is Linux, where “everything is done by someone else”. The
MkLinux Developer's Corner is a small but intrepid band of MkLinux
programmers who are willing to take on (and complete) needed projects. Our
Developers Corner has provided us with the X11R6 port, NetaTalk, GNU-step
for MkLinux, HFS filesystem utilities, and a number of other interesting and
desirable additions. We're happy to count these developers as members of the
MkLinux team.

Last, but not least, our thanks go to all the MkLinux users who bravely
download and install each new update as it is posted. In a small internal project
such as MkLinux, we don't have access to Apple's dedicated software testing
organizations. We've tried to test and debug our Developer Releases and
updates before they are released, but we rely on our user community to stress-
test our releases in a wide range of network environments and hardware
configurations. We've been most impressed by the helpful comments,
willingness to get involved, cogent bug reports and sensible e-mail we've
received from all these folks.

You Can Join Our Team!

The MkLinux team currently numbers over 15 registered developers, some
4000 registered users and 5000 mailing list subscribers. (We admit some of the
mailing list subscribers are also registered users.) If you haven't joined our
team, we'd be happy to welcome you.

The current release of MkLinux is always available by both anonymous FTP and
on CD-ROM. Our FTP site, ftp://ftp.mklinux.apple.com/pub/, is mirrored by
nearly two dozen sites worldwide. The Apple-endorsed CD-ROM, emblazoned
with MkPenguin (the Linux penguin, sitting on a Power Mac), is available via
mail order from the publisher, Prime Time Freeware (http://www.ptf.com/,
info@ptf.com).

Due to their experience in Unix and freeware publishing, Prime Time Freeware
has been selected to publish Apple's reference release of MkLinux. Edited with
the assistance and support of the Apple MkLinux team, MkLinux: Microkernel
Linux for the Power Macintosh will contain both a tutorial introduction to
MkLinux and a variety of interesting and useful reference material. By the time
this article goes to press, the reference release should be in print.

Composed of a book and two CD-ROMs, the product will contain a variety of
reference material about Linux, Mach, MkLinux, and the Power Macintosh.
MkLinux: Microkernel Linux for the Power Macintosh is the only reference work
for MkLinux, containing a variety of material that will be unavailable from any
other single source. It will be available in many technical and professional
bookstores and by direct mail order from the publisher.

Visit our web site (www.mklinux.apple.com) and look around, then join some
mailing lists. We strongly recommend you join mklinux-announce and mklinux-
answers; these are moderated lists (low in volume, high in relevant
information) keep users abreast of important events in the MkLinux
community. The remaining (topical) groups provide a means for you to interact

with other MkLinux developers and users, sharing ideas, problems, and
solutions. See you on the Net.

MkLinux Combatability List

Vicki Brown has been working with Unix systems of one sort or another since
1983, much of that time in the employ of Apple Computer. Currently a member
of the MkLinux project team, she describes her job duties as Firewarden, Web
Gardener and Stagehand. In her spare time Vicki enjoys reading, keeping up
with Star Trek and Babylon 5, and spending time with her spouse and four cats.
She can be reached at vlb@apple.com.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/037/2093s1.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/037/toc037.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Tcl/Tk with C for Image Processing

Siome K. Goldenstein

Issue #37, May 1997

See how to use a mix of Tcl, Tk, and C to make image manipulation both easy
and efficient.

To start an implementation in C from scratch for an image processing (or
manipulation) program is a difficult task. It is necessary not only to develop an
internal data structure, but also to write the filters for reading and writing the
available graphic formats. The interface design and implementation is also
difficult, due to the need for dealing with issues such as color allocation,
quantization and so on. In this article, we'll show you how Tcl and Tk can help
you in dealing with these problems easily. However, it should be noted that
some operations on images are computationally intensive, making the use of
Tcl prohibitively expensive. So we'll use a mixture of Tcl and Tk with C, and get
the best of both worlds.

In Linux Journal #10 (February, 1995) Matt Welsh wrote a nice article describing
a way to use Tcl/Tk as a front end for C programs using pipes to and from a
wish process. While this method has many advantages, e.g., straightforward
implementation and memory saving when using static libraries, it does present
some limitations:

• First, since your program is “split” into two different processes, the sharing
of resources is not an easy task.

• Second, all communication is done through the pipes, imposing an extra
burden on the system.

In this article, we approach this problem using Tcl/Tk as an extension to the
core program, and show some of the advantages of solving it in this manner.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

A Practical Example: Let's Dither

We'll start by writing a small program to do a special dither (half-toning) for
creating a special effect that applies only to a selected sub-rectangle of an
image.

The described technique transforms vertical strips of colored pixels into a
vertical strip of black and white pixels, where the average intensity best
approximates the original average. Also, all black pixels are grouped in the
center. (This effect has been used in the entertainment industry for some time
now.) See Figure 1. The following sections describe the necessary steps for
accomplishing this effect.

Figure 1. The typical appearance of the program after the dithering of one rectangular region.

Image in Tk

The very fabric of our program is based on the image primitive, which first
appeared in Tk version 4.0. The idea is to create an “image object” with an
associated command, just like any normal widget.

Images can be of two different types: bitmaps and photos. While bitmaps deal
only with foreground and background colors, photos treat true-color objects,
automatically quantizing for the available number of colors in the display. Let's

focus on the “photo” type, which was implemented by Paul Mackerras based on
his earlier “photo widget”.

A command for creating an image object named “picture” with the image in the
file “mickey.gif” would be:

image create photo picture -file mickey.gif

After its creation we can easily do some operations. For example, to get its
dimensions:

set pic_wid [image width picture]
set pic_hei [image height picture]

You can also create a second image, and copy a section of the first one into the
second:

image create photo pic_piece
pic_piece copy picture -from 0 0
 [expr $pic_wid/2] [expr $pic_hei/2]

During the copy you can use the Tk options subsample or zoom to reduce the
image or enlarge a portion of it. The copied portion can be placed anywhere
inside the destination image.

It is possible to specify the size of the color cube of a given image (you can even
explicitly impose it to be gray-scale), its gamma correction and some other nifty
things. Check out the photo man page for details.

A good way to both see the image and allow some manipulation is to treat it as
a “canvas object”:

canvas .c
pack .c
 .c create image 1 1 -anchor nw -image picture
 -tags "myimage"

After creation, you can draw and manipulate any canvas object you wish just as
if it were floating upon myimage. Just remember to keep the image as the
“lower” object, so that you'll always be able to see everything else. This
positioning can be accomplished by giving:

 .canvas lower myimage

Tcl/Tk as an Interface for Your C Programs

Let's make a small distinction between two kinds of C-Tcl/Tk applications: those
which act like a shell (wish, for example) and those which use the Tcl/Tk
extension in a predetermined way.

If you want to create another “instance” of wish with some extra commands
you have created, you should read the man pages concerning Tcl_Main and
Tcl_AppInit.

If your program uses Tcl/Tk only for the interface, and it is not intended to be
used in a “shell-like” fashion, the approach is slightly different. I recommend
you grab the nice demo program tkHelloWorld.tar.gz (see Sidebar) to use as an
example.

Basically, your program has to implement the following four steps:

• Initialize Tcl and Tk.
• Create the Tcl commands responsible for calling your C routines.
• Ask Tcl to evaluate an “interface description” file.
• Let Tk control the main flow of the program.

In the C code shown in Listing 1, the comments identify exactly which of the
four steps is being done.

Listing 1

From this point on, we wish to use C programming only for some critical
functions, since the main flow and control of our application is handled by Tk.

Calling C Functions from Tcl

If you are interested in the myriad ways you can call a C routine, read TCL and
the TK Toolkit by John K. Ousterhout, Addison-Wesley, 1994.

Essentially your C function must have a prototype like the following:

int
C_func_name (ClientData cd, Tcl_Interp *interp,
 int argc, char **argv);

and you must register it by:

Tcl_CreateCommand (interp, "Tcl_func_name",
 C_func_name, (ClientData *) NULL,
 (Tcl_CmdDeleteProc *) NULL);

Then, whenever Tcl encounters the command Tcl_func_name, it will call your
routine, which will receive the Tcl parameters just as main receives the argc and
argv arguments from the shell, i.e., argc will be the number of words and argv
will be the “vector of strings”.

https://secure2.linuxjournal.com/ljarchive/LJ/037/1344l1.html

Passing Images Back and Forth

We want our C routine to process an image called image_name under Tk. The
immediate solution would be to pass the color of each pixel (the photo widget
has this option) again and again until the image is complete. While this program
was running, we could go out for lunch, visit a few friends, have dinner and see
a movie. However, there is a better way to accomplish the goal. From C, we ask
Tk to take care of it. First, we have to define:

Tk_PhotoHandle image;
Tk_PhotoImageBlock blimage;

Then call the following functions in sequence:

image = Tk_FindPhoto ("image_name");
Tk_PhotoGetImage (image, &blimage);

The image is in blimage, which is a structure defined in tk.h as:
typedef struct {
 unsigned char *pixelPtr;
 int width;
 int height;
 int pitch;
 int pixelSize;
 int offset[3];
} Tk_PhotoImageBlock;

All color information comes in unsigned characters (values between 0 and 255).
The pixelPtr is the address of the first pixel (top-left corner). The width and
height define the image dimensions, while pixelSize is the address difference
between two horizontally adjacent pixels, and pitch is the address difference
between two vertically adjacent ones. Finally, the offset array contains the
offsets from the address of a pixel to the addresses of the bytes containing the
red, green and blue components.

Using the above definitions allows different representations of the image; for
example:

• Define a point with a dimension of three bytes, one for each color
component. Then the pixelSize is 3, the offset 0, 1 and 2 and the pitch
three times the width.

• Think of the color image as three planes (images), one for each color.
Then the pixelSize is 1, the offset is 0, width*height and 2*width*height.
Finally, the pitch is equal to the width.

The colors of a given pixel can be obtained with three simple C macros:

#define RED(p,x,y) ((p)->pixelPtr[(y)*(p)->
pitch + (x)*(p)->pixelSize + (p)->offset[0]])
#define GREEN(p,x,y) ((p)->pixelPtr[(y)*(p)->
pitch + (x)*(p)->pixelSize + (p)->offset[1]])

#define BLUE(p,x,y) ((p)->pixelPtr[(y)*(p)->
pitch + (x)*(p)->pixelSize + (p)->offset[2]])

You call the macros giving the address of the block structure explained above
as the first parameter, and the x and y coordinates (where 0,0 is the upper-left
corner) of the pixel as the second and third. For an optimized program, it would
be much faster to use address differences to determine the position of the next
pixel from the current pixel, i.e., its neighbor.

About the Program

The complete C code for this program is in Listing 1, and the Tcl code is in
Listing 2.

Figure 2 is a snapshot of the program in action.

Figure 2. An Example of all possible output clusters, when the vertical size is five. The criterion
of choice is the nearest average.

Listing 2

The program can be downloaded from: ftp://ftp.impa.br/pub/visgraf/people/
siome/lj/ljdither.tgz.

An Important Remark about C and Tcl/Tk Interaction

When Tcl/Tk calls a function in C, it can still receive interface events, such as
button presses or slider movements; however, it cannot run the associated
scripts (or C functions) bound to these events, since for the moment the C
function controls the flow.

https://secure2.linuxjournal.com/ljarchive/LJ/037/1344f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/037/1344f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/037/1344f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/037/1344l2.html

A good example is a mass-spring simulator, where the C function has a loop
doing the simulation and canvas drawing. It would be wonderful to be able to
change the constants during the simulation, or even abort it before the pre-
determined time. This option is also needed in long Tcl scripts. The solution in
both cases is to use the update command from time to time in order to process
user input.

From the update man page:

The update command with no options is useful in
scripts where you are performing a long-running
computation but you still want the application to
respond to user interactions; if you occasionally call
update, user input will be processed during the next
call to update.

Conclusions

A powerful combination is achieved by letting Tcl/Tk deal with the interface and
C with the critical tasks of a program.

A lot of useful extra widgets can be found on the Internet for using sound (see
tkSound), moving objects and so on. The principle for integration of these
widgets is the same—you can create a new wish-like shell, or use the new
available functions together with come extra C code of your own.

Another good package is Tix, which is included with many Linux distributions. It
adds many wonderful widgets to Tk, and has an object-oriented approach to
building new “mega-widgets”.

I hope you find this article useful, and have a nice hack.

Resources

Siome Goldenstein is an Electronics Engineer who is currently finishing a
Masters degree in Computer Graphics. He loves Aikido and non-technical
reading. Siome lives in Rio de Janeiro, Brazil. Comments can be sent to him via
e-mail at siome@visgraf.impa.br.

Archive Index Issue Table of Contents

https://secure2.linuxjournal.com/ljarchive/LJ/037/1344s1.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/037/toc037.html

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Internet Servers in Perl

Mike Mull

Issue #37, May 1997

In a sequel to his “Perl and Sockets” article in the March 1997 issue of Linux
Journal, Mike Mull demonstrates how Perl can be used for the server end of a
socket connection.

In my previous article in Issue #35 of Linux Journal, I wrote about the socket
library functions in Perl with an emphasis on writing Internet client programs.
Perl is also a good language for Internet servers, not only because of the socket
capabilities and the ease of dealing with files and data, but because it also has a
special mode for improving security. In this article I cover several aspects of
writing Perl servers, including how to use the basic socket functions, how to
best handle multiple connections, asynchronous communication and security
issues. In the process we'll develop a simple Internet server similar to fingerd
that works through the Web.

Socket communication may be either connection-oriented or connectionless.
Connection-oriented protocols, like the Internet's Transmission Control
Protocol (TCP), establish a link between client and server before exchanging any
data. Connectionless protocols, like the User Datagram Protocol (UDP), simply
read or write data, specifying the client or server address each time. Most
servers use a connection-oriented scheme, and we use this approach in our
example server (see Listing 1). However, I discuss the connectionless approach
below.

Any Internet server, from the simplest to the most complicated, first uses the
two functions socket and bind to establish an identifiable communications
endpoint. The server uses socket to create a socket with the desired type and
protocol. Recall the syntax for this function is:

 socket SOCKET, DOMAIN, TYPE, PROTOCOL

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/037/2064l1.html

SOCKET here is a Perl file handle initialized by the call to socket. For Internet
TCP applications DOMAIN is AF_INET and TYPE is SOCK_STREAM. The Perl 5
Socket package defines the constants AF_INET and SOCK_STREAM as well as
other socket-related constants and functions; refer to the previous article for
details. The

An Internet server must bind a network address to the socket with the bind

function. A client can bind an address, but it is not usually necessary in
connection-oriented clients. This is also referred to as “naming the socket”. This
process specifies the network address to which a client must connect to start
communicating with the server. The syntax of bind is:

 bind SOCKET, NAME

The SOCKET argument is still the file handle created by the call to socket. NAME

is the address that is bound to the socket. The contents of this argument can be
quite complicated (again, refer to the previous article for details). For versions
of Perl from 5.2 on, a function in the Socket package called sockaddr_in returns
a value for the NAME argument given a port number and an Internet host
address. If you're writing something like an ftp or HTTP server, you can use the
reserved “well-known” port number (see the file /etc/services for these
numbers). Otherwise, any positive 16-bit integer will suffice as long as it is not
one of the reserved numbers. For servers the special argument INADDR_ANY

can be used for the Internet address, which lets the kernel pick an address for
the socket.

For connection-oriented servers like our example program we now can use the
listen function to tell the operating system that we'll accept connections on the
socket. This function looks like this:

 listen SOCKET, QUEUESIZE

We all know what SOCKET is by now. QUEUESIZE specifies the number of
attempted connections that can be kept waiting; the symbol SOMAXCONN is
the maximum for this argument (usually 5). This lets the server handle several
near-simultaneous connection requests, a crucial feature for HTTP servers or
daemons like inetd.

Now a client program could attempt to connect to the server, but we need
more code to actually create the link. For many servers, the accept function is
called, typically in a loop of some sort, directly after listen. The syntax of accept

is:

 accept NEWSOCKET, GENERICSOCKET

This function opens NEWSOCKET, a file handle that you can read from or write
to in order to communicate with the connecting client. GENERICSOCKET is any
open, named socket. For our server, this is the named socket we've already
created with socket and bind. accept returns the address of NEWSOCKET in the
same form as the NAME argument to bind.

Note that the accept call waits until a connection request arrives, so no
processing can occur until it completes. This usually poses no problem since it
matches the way most servers work: they wait for a request and then service it.
Sometimes, though, an application might perform other tasks, like calculation
or system monitoring, that can't be stopped to wait for client connections. If so,
communication can be done asynchronously—that is, processing can be
interrupted temporarily using a signal handler to make the socket connection
and to process the client's request. I don't cover this in detail since that
requires a lengthy digression into the fcntl system call and signal handlers, but
Listing 2 illustrates the basic idea.

UDP does not guarantee reliability; extra user code must deal with problems
caused by packets that don't make it to their destinations. The Internet's main
connectionless protocol is called UDP, or User Datagram Protocol. A datagram

contains all of the information required to send it to the right place. needed.
For a connectionless server, listen and accept are not needed. A connectionless
client usually does need to use bind so that a valid return address gets passed
to the server in the client's data packets, but we won't worry about the client
side here. To use UDP on our socket rather than TCP, we simply replace the
socket argument SOCK_STREAM with SOCK_DGRAM and the getprotobyname

argument tcp with udp.

In C we use the system functions sendto and recvfrom to send data between
client and server with UDP, but Perl doesn't implement these directly. Instead,
Perl uses send and recv for both connection-oriented and connectionless
protocols. After setting up the socket with socket and bind, a connectionless
server would usually call recv:

 recv SOCKET, SCALAR, LEN, FLAGS

This function blocks until data becomes available on SOCKET, then reads LEN
bytes into the scalar variable SCALAR. FLAGS are the same flags as for the recv

system call. recv returns the address of the client, which can then be used to
send information back with the send function:

 send SOCKET, MSG, FLAGS, TO

TO is the client address. The socket code in the simplest connectionless server
would look something like this:

https://secure2.linuxjournal.com/ljarchive/LJ/037/2064l2.html

 socket(S, AF_INET, SOCK_DGRAM, \
 getprotobyname('udp'));
 bind(S, sockaddr_in($port, INADDR_ANY));
 $cli_addr = recv S, $request, 80, 0;
 send S, $message, 0, $cli_addr;

Now back to our TCP server. Remember I mentioned earlier that several
connection requests can get queued up so the server can respond to each in
turn. This might be inefficient (and probably annoying to the client user) if the
server does something that takes a significant amount of time, like querying a
database or running an external program. To get around this problem, many
servers fork a new process to handle a request once they accept a connection.
Look at our example server code for details. The only slightly tricky part is the
CHLD signal handler used to clean up zombie processes.

Servers often run as setuid or setgid programs, meaning the processes have
the privileges of the user or group that owns the executable file regardless of
who runs the program. At the very least, a server program will run under your
own user ID. Since anyone can, in principle, use an Internet server, you can see
security is of the utmost importance. You must make sure the server does not
give privileged access to important system files or your own confidential data.
Usually this requires checks on environment variables, file privileges, external
program execution, etc., so that it's hard to be thorough. Fortunately, Perl helps
us out here with its taint mode, a mode that checks for common security
violations. The -T command line switch turns on this mode, so we just add this
to the “shebang” line at the top of the script.

The exec function in the example server might cause security concerns for at
least two reasons. First, executing an external program implies the use of the
PATH environment variable. This variable is considered to be tainted until we
set it explicitly in the script, since it could be modified to cause the execution of
a program other than the one we intended. Second, we separate the
arguments to exec into the program name and the argument list, which
prevents exec from calling the shell to do metacharacter substitutions. If these
modification were not made, the taint mode would send warnings to the
terminal and stop the program (in fact, that's how I found these problems).
Keep in mind taint mode does not guarantee security, but it does make it much
easier to identify well-known problems.

Network servers are among the most complex pieces of software, which is to
say, you should by no means consider this article a comprehensive treatment
of the subject. Still, you'll be surprised to find how many of the elements of our
simple example program show up in even large, complicated servers. Perl does
reduce some of the complexity though, since you already have convenient tools
at hand to do the hard parts, like parsing protocols and manipulating files. Even
if you ultimately decide to write the program in C or some other compiled

language, Perl can't be surpassed for prototyping server applications. The price
is right too, but I don't need to convince Linux users of the value of “free”
software.

Mike Mull writes software to simulate sub-microscopic objects. Stranger still,
people pay him to do this. Mike thinks Linux is nifty. His favorite programming
project is his 2-year-old son, Nathan. Mike can be reached at mwm@cts.com.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/037/toc037.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

An Interview with DEC

David Rusling

Jon Hall

Issue #37, May 1997

David Rusling and Jon “maddog” Hall talk about Digital Equipment Corporation
and the porting of Linux to the 64-bit Alpha.

The Alpha port of Linux actually started on two fronts, one in the Littleton,
Massachusetts offices of Digital Equipment Corporation, and one on a riverboat
in New Orleans, Louisiana.

The first front was started by Jim Paradis of Digital Semiconductor's Alpha
Migration Tools group. Jim's group is responsible for finding innovative new
ways of using Alpha processors, and Jim had been looking at several versions of
the Unix operating system to determine if there was a possibility of doing a
port. Jim had determined that Linux would give an efficient, powerful operating
system, and he proceeded to start a 32-bit port of Linux to the Alpha as a test
case. Jim believed that a 32-bit version of Linux would be the easiest platform
for porting the GNU tools, the X Window System and other applications.

In the meantime, Jon “maddog” Hall was helping to plan for a DECUS event in
New Orleans. DECUS is the Digital Equipment Corporation Users' Society, and
the Chairman of the DECUS Unix Special Interest Group (Unix SIG), Kurt Reisler,
wanted to bring Linus Torvalds to DECUS to speak about Linux. This was in May
of 1994, and V1.0 of the kernel had only recently been released. Kurt was
having trouble funding Linus's trip from Helsinki, so the Digital UNIX Base
Product Marketing Team funded the trip. On meeting Linus, maddog was as
impressed with the young man as he already was with the operating system he
had designed. After DECUS, while riding the riverboat Natchez, the prospect of
doing a 64-bit port to the Alpha was broached, and a short time later, an Alpha
system was on its way to Helsinki.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

maddog:

About that same time, I found some of the Digital UNIX engineers were using
Linux. Through contacts made in the engineering group, I located Jim Paradis
and opened up conversations with him. Shortly afterward, a small team of
engineers were put together to do further work on the Alpha port of Linux.
Through marketing research, I convinced the team that joining their efforts with
Linus in doing his 64-bit port was the thing to do. Although the 32-bit port was
further along at the time, the 64-bit port was moving fast, and the issues
around 32/64-bit porting were not materializing to the extent Jim had expected.
Therefore, Jim “packed up” the 32-bit port, and the engineering staff started to
attack the 64-bit port along with Linus and several brave volunteers.

David Rusling:

When this project started, Linux only ran on Intel x86-based systems. The early
days involved a lot of frantic activity tracking Linux kernel releases, and at the
same time, porting Linux to the Alpha AXP platforms. The earliest port of Linux
to the Alpha AXP was based upon the 32-bit Intel kernel, and in retrospect,
maybe we should have been braver and gone straight to 64-bit native AXP
support. At that time Linus was working toward exactly this end. His approach
was to port the kernel to AXP and run Digital Unix binaries to get a working
system. Our approach was to take 32-bit Intel Linux and port that and the rest
of the system applications (for example init and bash) to AXP without disturbing
their natural 32-bit-ness. We swapped a lot of code with Linus but in the end
felt we were not contributing to the mainstream effort—which was always
Linus's codestream. I guess there was just so much to be done that all of the
work was useful, but in the end, we switched over to Linus's 64-bit AXP kernel
work and contributed there. Very little of the early work was wasted; the work I
did on MILO (the Alpha Linux Miniloader) ported straight over to 64-bit Linux,
as did Jay Estabrook's device driver work and Jim Paradis's memory
management and systems work. The PCI code used in all of Linux's platforms
also comes from that time period. Our first goal was to get a self-hosting Alpha
Linux system that did not crash and had working SCSI and Ethernet device
drivers. We needed SCSI to support the file system and Ethernet device drivers
to support networking. There had to be enough applications to be able to build
the Alpha Linux kernel.

In the very early days, there were no other Alpha AXP users besides the three of
us in Digital and Linus. Another hardy early contributor was David Mosberger-
Tang, who was brave enough to buy an Alpha AXP Noname system and start
hacking. The five of us worked hard and the code flowed freely. Our early goal
was to have a free distribution of Alpha Linux that could be taken and used by
the greater Linux Community. Jim Paradis's BLADE release contained enough of
a system for people to easily get Alpha Linux up and running on their system

well enough to start writing code. At the time BLADE came out, there were only
two widely available supported Alpha Linux systems, the Jensen (DECPC 150)
and the Noname board (so called because any clone vendor could put their
name on it). The Noname board was reasonably—although still rather
expensively—priced, and quite a few were purchased for running Linux. BLADE
got Alpha out to the mainstream Linux community—or, at least, to the braver
souls in the Linux community.

maddog:

Another market research “coup” was the decision to have only one source code
tree for the kernel, as was the determination to have the Alpha version of Linux
as close to the Intel version as possible. One of the early projects based on this
decision was to move away from the Extended Common Object File Format
(ECOFF) and to do Executable and Linking Format (ELF) instead. ELF had already
been selected for the Intel side, and the Intel version of Linux had to transcend
the a.out-to-ELF formats. The ELF project started immediately, and the
transition from ECOFF to ELF happened before Alpha Linux rolled into common
usage.

David Rusling:

Before ELF, the image sizes were enormous since every image was statically
linked. When ELF came along, the entire system usage got a whole lot better.
The change was particularly dramatic on the DEC Multia/UDB (Universal
Desktop Box); you could run X in 32MB of memory and not use any swap space.

maddog:

The third big marketing decision was that Digital would not sell Linux, but
instead allow the existing vendors of Linux systems to supply the distributions
and support. This led to the decision to have Digital engineering contribute
back in source code (whenever legally possible) everything they had developed
for Linux.

David Rusling:

At Digital we never saw ourselves as “owning” Linux; Linux cannot be owned or
controlled by anything but the worldwide Linux community. Throughout the
early days we were essentially playing catch-up with Intel Linux. We were
writing code, porting code and running around showing people this neat, new
thing. We Digital folks saw (and see) ourselves as part of the wider Linux
community. I had not even used Linux before MILO first booted it on an Alpha.
Linux is infectious. Our role was, and still is, to be a catalyst to the rest of the
Linux world. A good example is the Red Hat Alpha Linux release. We helped

make that possible, but it was Red Hat who did the real porting work. They did
it because, like us, they believe Alpha AXP is a good Linux platform. Another
example of Digital leveraging the larger Linux world is the driver for our TGA (or
Zlxpe) graphics adapter. This card had no XFree86 support but was being used
in our Windows NT and Digital Unix Alpha systems. Jay Estabrook did a port of
XFree86 for that device, and we also released TGA sources to the XFree86
project.

maddog:

Many might ask why the Alpha port is important. First of all, the Alpha is the
world's fastest single-chip microprocessor. Linus wanted a fast system to show
what Linux could do, and the Alpha was a natural choice.

Secondly, the Alpha is a true 64-bit system, with 64-bit integers and a 64-bit
virtual address space. This allowed Linus to see what the kernel would require
in the way of page tables, etc. On another plane, the large address space of the
Alpha allows Linux to be used in research for computing large memory models
—particularly interesting in parallel systems and clustering techniques.

Third, the Alpha is a very clean RISC architecture. In the beginning, it was so
clean that the Alpha did word accesses only to memory, which forced some of
the kernel data structures to be redesigned for efficiency. Later Alpha chips
have byte instructions, but this cleanliness of the architecture helped to set the
pace for other RISC architectures.

David Rusling:

Many folks have taken to the Alpha because they like its technology. Its purity
of architecture, speed and natural 64-bit support are very attractive to
technologists. There was a lot of interest from the research and academic
communities—the combination of an operating system that we already knew
and loved, together with falling prices of Alpha-based systems helped sales
quite a bit.

maddog:

Fourth was the fact that Digital was an early adaptor of the PCI bus. Although
some early Alpha systems had Turbo-channel buses for backwards
compatibility with our older systems, Digital started early in the Alpha system
life to provide PCI support, at the same time blending in EISA and ISA support,
too. This made it easier to move device drivers from Intel Linux to Alpha Linux,
which would probably have been more difficult if the systems had a proprietary
bus, such as the Sbus or NuBus.

David Rusling:

Alpha Linux has been able to capitalize on two things. Firstly, Alpha PCs with
their PCI and ISA buses can use exactly the same devices as Intel PCs. Secondly,
the price of an Alpha PC is mostly determined by its component prices and, as
the price of the Alpha Linux OS has fallen, Alpha PCs have correspondingly
become much cheaper, and thereby, more attractive.

maddog:

Fifth was the fact that Digital was encouraging clone makers by selling Alpha
systems, boards and chips to original equipment manufacturers who wished to
make their own configured system boxes. In order to make this as inexpensive
and open as possible, the Alpha Linux engineering team chose the Advanced
RISC Computing (ARC) console systems (commonly used with Windows NT), and
wrote a source-code-available version of the console code (called MILO) as well
as a source-code-available version of the privileged architecture library (PAL)
code.

But from a general viewpoint, it was important that a 64-bit port be done, and
done with a different architecture than Intel. At the time the Alpha port was
started, the Linux kernel was highly optimized for the Intel architecture, utilizing
more than a little Intel assembly language and Intel architecture tricks in places
like context switching, and it was only a 32-bit port. Likewise, the source code
tree and the kernel structure were not optimized for various architectures. By
porting to the Alpha, the Linux team paved the way for all the other ports to be
completed and integrated cleanly.

David Rusling:

There is more to Linux than the operating system. Most of the useful functions
of Linux are in the system utilities that make the Linux operating system what it
is. Bash, X servers and so on, are what the user sees and uses. The kernel is a
relatively small (but important) part of the system. As the small but determined
group of Alpha Linux users grew, they concentrated on getting more of these
system utilities to run. Meanwhile, at Digital we concentrated on supporting the
hardware platforms and devices we believed would make good Linux systems.
For example, Digital Semiconductor sells a range of PCI network chips under
the codename “Tulip” (the 21x4x device range). A lot of Linux device drivers
were not particularly portable then, since some had embedded Intel assembly
code in them as well as 32 bit-isms. Jim and Jay spent a lot of their time porting
working Intel Linux device drivers over to Alpha Linux, ironing out portability
issues. maddog was waving the Alpha Linux flag at various trade shows, and in
August 1995, we were able to show Alpha Linux running an S3 X server at the
Unix Expo. I worked on the Alpha Linux Miniloader, MILO, which is, roughly

speaking, LILO on acid. It is a freeware loader that allows Windows NT Alpha
boards to boot and run Linux. It uses real Linux device drivers and file systems
to get the Linux kernel loaded and running. As soon as Jim and Jay got the
device drivers working in Linux, I'd get them working in MILO. MILO lowers the
entry price of Alpha Linux as you do not have to pay either the system resource
monitor (SRM) console license fee or the Digital Unix license fee to buy a
hardware platform that runs Linux. In the spirit of Linux and the Free Software
Foundation, MILO is freely available and redistributable code.

maddog:

At this point the Alpha project is about at parity with the single Intel processors
from a functionality standpoint. Work is starting on systematic multi-processing
(SMP) for the Alpha, and the things that are missing for the Alpha tend to be
missing (for the most part) from the Intel Linux systems as well—applications.
The Java port that is being worked on for Alpha Linux will certainly help fill this
gap, as will projects like GNUstep and other application environment issues.

David Rusling:

Today Linux's multi-architectural support is very natural. Almost everything a
Linux user or system needs can be built for Alpha straight out of the box. Our
early aim was to make Alpha Linux an attractive alternative to Intel Linux. With
off-the-shelf Linux distributions, most device drivers running happily and a
wide choice of supported graphics devices, we have achieved our goals. Along
the way we have had fun, made friends and learned new stuff. What is left to
do for Alpha AXP Linux? First, we will continue to support our hardware and, as
we build new Alpha PC motherboards, we will either port Linux ourselves or
make the information available that will allow others to do the port. Second, we
will make technical information available to the wider Linux community. The
one thing I have learned about the Linux community is that there are a lot of
bright and able programmers who only need the right information and some
access to the hardware to do an excellent job. Third, we need to make Alpha
Linux systems price competitive with Intel Linux systems. When we were first
porting Linux, the price differential was very high, but in the last two years, that
price gap has closed significantly due to more companies cloning and selling
Alpha PC systems in volume. Linux is responsible for a fair proportion of that
volume.

maddog:

We could use some more tuning of the compiler optimization sequences which
the gcc compilers generate for the super-scalar Alpha architecture. Likewise,
certain math libraries need to be optimized and made available in source code
format, not only for the Alpha, but for other ports as well.

We would like to see a virtual porting and certification lab on the Internet, so
applications developers who do not have Alpha systems can port and test their
applications. This would also be a good idea for some of the other ports, such
as SunSPARC, PowerPC, etc.

Testing and benchmarking of Alpha systems running Linux under different load
types, creating meaningful benchmark results would also be useful.

Doing real work in large-scale distributed computing with “clusters” of Linux
systems would also provide helpful information.

Also needed is a defined set of applications program interfaces (APIs) and
application binary interfaces (ABIs) that fit across a variety of Alpha Unix and
Linux systems (FreeBSD, netBSD, Linux, Digital UNIX and a variety of other Unix
systems) so that commercial application vendors could create shrink-wrapped
applications for a larger audience than any one Unix system could attract.
Applications tested against the ABI should be able to run on any Alpha Unix/
Linux system.

David Rusling:

I agree. The future of Linux (all flavours) rests on its ability to attract
applications. Whilst the normal engineering set of tools (Emacs, LaTeX, Tk and
so on) works quite happily on all of the Linux platforms, Linux needs more of
the marketing and presentation tools. It needs a viable desktop environment.
That can either be the ability to run Windows applications via Wabi or it can be
native applications conforming to some interface specification. The free
software world is unfortunately less interested in WYSIWYG applications than in
writing operating systems.

One option I find really attractive is the idea that Java applications could run
under Linux as well as, if not better than, any other operating system
incorporating a Java Machine.

maddog:

While Digital has allocated four engineers, one product manager and one very
over-worked marketing manager to the task, we realize none of this could be
possible without the long hours contributed by the Linux community.

We want to help the community move Linux along the path that they feel is the
best.

David Rusling is Principal Engineer of European Semiconductor Applications
Engineering, Digital Equipment Co. Ltd.

Jon “maddog” Hall is Senior Leader of Digital UNIX Base Product Marketing,
Digital Equipment Corporation

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/037/toc037.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Safely Running Programs as root

Phil Hughes

Issue #37, May 1997

Every time you are running as root, you are taking a chance. With a little
programming, you can decrease the need to be root and make your life a little
safer.

This article is more about ending a bad habit than serious programming. How
many of you regularly become root to do some routine task? I thought so. And,
worse yet, how many of you just stay logged on as root because you know you
can do what you want? That's too many.

One very common reason to become root is to run a shell script needing root
privileges. For example, starting PPP is usually done by a script that must be
run as root. For this article, I use that example as the basis for the code shown
in Listing 1. There is nothing special about it—it just happens to be a common
example. This same program can be modified to run other scripts requiring
root privileges or to do other root-like tasks.

The first thing you need to understand is the meaning of the phrase “set UID on
execution”. This concept is the only patented feature in Unix. It is the ability to
“look like another user” while executing a program. The most common example
is running the passwd program to change your password. If you look at the
permissions on the password file you will probably see something like this:

-rw-r--r-- 1 root 1260
Nov 3 10:05 /etc/passwd

Notice that only root has permission to write to the file. Now look at the
permissions on the password program:

-rwsr-xr-x 1 root 10636 Jun 6 1996
/usr/bin/passwd

Notice there is an s where you would expect an x to indicate execute
permission for the owner. The s indicates the “set UID” bit is set.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/037/2114l1.html

Having the UID bit set means when you, as an ordinary user, execute the
passwd program, the program is executed as if you were root. This enables you
to change your password entry in /etc/passwd, but you won't be able to do
anything else. The program itself (/usr/bin/passwd) is responsible for making
sure you do only reasonable tasks; since you don't have write permission to the
program, you can't change it.

If you understand set UID, you can now see how important it is in guaranteeing
program security. For example, if your program has a way to get into the shell,
it has a security hole.

While we are talking about security holes, one other approach is allowing shell
scripts to run set UID. This ability actually exists in some Unix systems, and it
opens huge security holes. Ideally, you must be able to read the script and trust
it.

The program I wrote to start and stop PPP is in Listing 1. Its purpose is
execution of the appropriate shell script to start or stop PPP, depending on
whether it is called with an argument of on or off.

Most of the code is explained in the comments, but let me further explain a
couple of items. First, I chose to set the PATH environment variable to a
reasonable set of directories. It is important to do this to guarantee it's
impossible to sneak an unauthorized executable into the program. Second, I
used the execle system call to execute the appropriate script. execle passes the
new environment to the called program, so it inherits the search path I set
instead of the path of the calling user.

I also specified the full path name of the programs to run (see the #define lines)
—another security consideration. It should be unnecessary after PATH has
been set, but it's an inexpensive safety precaution.

Finally, the program must be installed properly. Once you have built the
executable (make ppp), you should become root, move it to an appropriate
directory (e.g., /usr/local/bin) and correctly set the permissions.

If you want anyone to be able to run the program, make sure it is owned by
root and set the permissions to 4711. The leading 4 specifies setting the set UID
bit. If you have a particular group of people you want to allow to run the
program, change the group owner of the program to the appropriate group
with permissions set to 4710.

That's it. If all goes well, you now have one less excuse to work logged in as
root.

If you need a system for allocating various root tasks to ordinary users,
solutions are readily available. Check out the sudo and super programs, which
are included in most Linux distributions.

Phil Hughes is publisher of Linux Journal. In a past life he was a Unix systems
programmer.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/037/toc037.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

LJ Interviews Przemek Klosowski

Marjorie Richardson

Lydia Kinata

Przemek Klosowski

Issue #37, May 1997

Mr. Klosowski tells us about his users group and why it is such a success.

Marjorie Richardson, Editor of Linux Journal, and Lydia Kinata, SSC Products
Specialist, interviewed Przemek Klosowski, the founder of the highly successful
Washington DC Linux Users Group. The interview was conducted via e-mail on
January 21, 1997.

Marjorie: First, why don't you tell us a little about yourself?

Przemek: I was born in Poland, and I lived there until 1985. I came to the US to
attend graduate school in Physics, at the University of Notre Dame. I now work
as a researcher at University of Maryland. Besides work, I enjoy being with my
wife, daughter and cat. We like nature walks, alpine skiing and socializing (we
have been known to have 8-hour meals with our friends). My music tastes are
rather eclectic—I like Bach as well as Bartok, Miles Davis and the band
“Morphine”. I also like tinkering with things mechanical, electronics and
computers. Therefore, my favorite radio programs are “Schickele Mix” and “Car
Talk”, conveniently broadcast back-to-back on our local public radio station.

Marjorie: Tell us something about your club's history: when you got started,
number of charter members, etc.?

Przemek: We started the club in July 1994. There are pockets of computer
industry around the Beltway, including the suburbs north of Washington where
I live. Hoping to reach such computer folks, I posted announcements to some
mailing lists and newsgroups, and distributed leaflets in libraries and computer
stores in the area. I expected a few people to show up for the first meeting, but

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

my expectations were exceeded—over 70 people appeared. Since then, we
have had about 30 people attend regularly, with some meetings attracting over
a hundred folks. Our most popular meetings featured a WWW talk, when the
Web was still a novelty, and a talk by Linus Torvalds himself.

Our DCLUG (DC metropolitan area Linux User Group) is the oldest and largest
club, but other groups also serve people in farther regions of the DC urban
sprawl—LUGMAN in Manassas, Northern Virginia, and UMLUG (University of
Maryland folks). In addition to our Linux activities, we are friends with the
Washington Area Unix User Group (WAUUG) and the DC System Administrators'
Guild (DC-SAGE). We are cooperating on talks and activities; quite a few people
are active in multiple groups.

Marjorie: How many members do you have now and what are the group's
demographics (i.e., age, gender, profession, etc.)?

Przemek: We have a varied distribution: a bunch of Gen-Xers, and then a
regiment of computer industry veterans—people who actually remember the
beginnings of the computer revolution. I do worry that we have very few
students; this is partly due to the fact that we aren't meeting anywhere near a
school, meaning a long commute for the typical student.

Indeed, selecting a meeting place is very important. An ideal place would be
near major highways and public transportation; a university campus might be a
good idea. We meet in an auditorium at the National Institutes of Health—a
nice place, but it's quite a commute for most of us.

As for gender, unfortunately we don't have many female members; we would
certainly welcome more gender and ethnic variety, but the simple fact remains
that the typical member is a young male.

Marjorie: Tell us about a typical meeting. Are they fairly informal, or do you
have planned talks and activities?

Przemek: We normally schedule a speaker for our meetings. I believe it helps to
keep up with the effort. If nothing in particular is scheduled, it is somehow
easier to stay home. Featuring scheduled talks keeps the momentum up.

Marjorie: Do you host special training sessions and/or install fests? Any annual
events?

Przemek: David Lesher and David Niemi did a wonderful job organizing our
four Install Fests. Interestingly, our last fest had a small turnout compared to
the previous ones—could it be that Linux has become so easy to install?

Actually, both Davids agree that the trickiest part in organizing the install fest is
the preparation—choosing the right time, spreading the word and registration.
We insist on registration not only to have a handle on what to prepare in the
way of resources and equipment (desk space, network hookups, etc.) but,
perhaps more importantly, to get the participants to collect solid information
about their hardware.

Marjorie: Do you attend conferences as a group and set up a booth? If so,
which conferences? Any experiences you'd like to share with us?

Przemek: We have attended the Washington DC conference (FedUnix/Open
Systems World) for three years in a row; the organizer (Alan Fedders of the
Washington Area Unix User Group) kindly lets us set up a booth there. We
usually shift our November meeting to coincide with the conference place and
time; this way, we can reach more people who might not hear about us
otherwise.

We run the club with a minimal amount of organization. We do not have formal
membership, club dues or formal leadership. This makes it more difficult to
operate events. We can't rent space and/or equipment, and we look like poor
cousins of better-endowed clubs such as PC User Group (the DOS/Windows
folks) or even the area Unix user group. On the other hand, none of us want the
club to develop into a part-time job, so we don't mind.

We haven't found the lack of funds to be a limitation—we get by through
trading favors, borrowing things, doing the work ourselves and light fund-
raising.

One coup we managed to pull off is our very own Linux server. David Niemi
made arrangements with Erol's, a large ISP in our area, to let us use one of their
computers connected to their internal backbone. This allows us to maintain a
local high bandwidth Linux FTP mirror as well as our own WWW server (http://
linux.wauug.org, with our club's home page at /dclinux/dclinux.html) and
assorted mailing lists. Needless to say, the machine runs under Linux. In return,
we try to help Erol's in various little ways.

For fund-raising, we distributed some vendor CDs during our install fest (we
obtained them on commission, so we didn't have any up-front costs). The
income will enable us to expand disk space on our server in the near future.

Marjorie: What are some of the reasons your members give for using Linux?

Przemek: I haven't asked widely, but my guess is that people use Linux because
it provides a “turn-key” development platform, often with the capabilities not

provided by commercial systems (Unix or Windows), and of course, you can't
beat the price. Actually, for many people it is not the money that matters most.
Rather, it is the aggravation of completing and configuring their system from
many disjointed elements (a TCP stack from this company, an NFS server from
that company, an X server from a third one, to give a Wintel-related example)--
and that was just for basic system functionality. Then, one still has to load all
the software that comes standard with Linux distributions: compiler tool-chain,
multi-media/WWW tools, etc.

For those of us who have to develop solutions to nonstandard computer
problems, as is often the case in my area of scientific research, Linux offers a
better platform because of its openness and freedom. A perfect example is the
adaptation of Linux to do hard real-time embedded computing (described
recently in Linux Journal)--such a project would be impractical without the
availability of the kernel source.

And, last but not least, Linux lets us (some say “forces us to”) hone our
computer skills. I have learned many things about computers (hardware and
software) while using my Linux system.

Lydia: How many of your members are primarily using Linux in their business?
What applications do they use?

Przemek: Quite a few of our members use Linux at work, but in many cases it is
low-key and/or their bosses don't know (or want to know) about it. There are
some spectacular exceptions, e.g., Donald Becker uses Linux as the basis for
the Beowulf project (http://cesdis.gsfc.nasa.gov/linux/beowulf/beowulf1.html).
And Erol's uses Linux extensively as an Internet server platform, as do other
ISPs in the area.

In general, people in science, research and development tend to have an easier
time applying Linux—there is not as much enforced uniformity. For instance, in
my laboratory, many researchers have their own Intel-based PCs. Some prefer
Windows, some prefer Linux. Linux tends to be easier to maintain—once set to
working, it stays working.

For those who require Microsoft applications in their work, we often set up
Wabi. This gives us the best of both worlds: good, user-friendly applications, on
a solid OS. If only the anti-trust law enforcement people would actually do their
job and break up Microsoft into an applications company and an OS company,
everyone would be much happier.

At the moment, we use Linux to do mundane things—graphics display, word
processing, data visualization—but we plan to employ it for actual control of

hardware instruments. In fact, if some young reader is interested in such topics
and likes living near DC, please get in touch with me; I am looking for an able
young programmer.

Lydia: Do you or any of your members contribute to the development of the
Linux kernel? Utilities or patches?

Przemek: Donald Becker wrote a majority of the network drivers for Linux. Eric
Youngdale worked on iBCS, Intel and Alpha-shared libraries and high-level SCSI
code. David Niemi co-maintains Mtools, and has worked on the floppy driver
and “other bits here and there”.

Others among us have contributed to various parts of the kernel and
applications, in both big ways and small (I contributed in minor ways to various
projects such as Emacs Calc, xmgr and tcl/expect).

Lydia: What are your thoughts on the pros and cons of the currently available
distributions?

Przemek: I personally like Red Hat, because housekeeping on their system is
easy due to the Red Hat Package Manager (RPM). Upgrading the Red Hat
system is easier than other systems that I have used. Other people swear by
Yggdrasil, Debian, Craftworks and Slackware—the differences aren't that great.

Marjorie: What do you see as the main purpose of your users group? Users
groups in general?

Przemek: Linux user groups let people create their own local support systems.
This is important especially when an answer can't be found by searching the
available documentation. True, everyone can post questions to worldwide
Linux newsgroups, but getting an actual answer is a different matter. A local
support market is more friendly, too.

Marjorie: To what do you attribute the success of your group?

Przemek: I think half of being successful is to stay in business long enough to
create a distinct group of people willing to participate over the long term.

Marjorie: What do you think the future holds for Linux and Linux user groups?

Przemek: Linux is here to stay and flourish. It is a complicated system, and
every once in a while it requires some expertise. The nice thing is that if you
have a problem, you know it is solvable, and will usually yield to the “scientific”

method of experimenting and progressive elimination. This is to be contrasted
with the “let's install the latest version of a screen driver” approach.

Linux user groups concentrate local Linux knowledge and are therefore a
valuable resource. I imagine businesses using Linux might appreciate such a
resource and draw on it for consulting and/or hiring, although we aren't at this
stage yet.

Lydia: How far do you think Linux can go as a competitor for Microsoft
operating systems or commercial versions of Unix?

Przemek: I don't think Linux will get a “market share” comparable to that of
Microsoft Windows. I propose that even if there were a free, high-performance
engine which fit the Ford Escort, most people would still drive the factory-
provided one for it. Similarly, most people would probably opt to trade off the
competitive features of Linux, because they don't want to, or cannot, cope with
its complexity.

I do think Linux will continue to have a major impact on the computer industry
by shaming it into action. It must be embarrassing for vendors to fail to provide
some functionality (a network protocol or a hardware driver or protected
virtual memory)--it can no longer be brushed off as “too hard to do”.

As to commercial Unix, I think Linux will entrench and become a major player.
As of today, in our lab we have more systems running Linux than all other
commercial Unices combined.

Thank you for the opportunity to talk about our club and about Linux.

Greetings,

Przemek Klosowski (przemek@nist.gov)

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:przemek@nist.gov
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/037/toc037.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Python Update

Andrew Kuchling

Issue #37, May 1997

Python has evolved since we last had an article on it. Andrew Kuchling brings us
up to date in this article, and we invite readers to submit suggestions for
Python topics Andrew might cover in future issues of Linux Journal.

What's been happening to Python since J. Bauer's article in Linux Journal #35?
Like most free software, Python is being continually developed and enhanced.
At the time of the original article, Python was at version number 1.2, and betas
of 1.3 were floating around. Since then, version 1.3 has been officially released,
only to be replaced by 1.4 in late October.

Versions 1.3 and 1.4 have both added new features to the language. The really
significant new item in 1.3 was the addition of keyword arguments to functions,
similar to Modula-3's. For example, if we have the function definition:

def curse(subject="seven large chickens",
 verb="redecorate",
 object="rumpus room"):
 print "May", subject, verb, "your", object

then the following calls are all legal:

curse()
curse('a spaniel', 'pour yogurt on', 'hamburger')
curse(object='garage')
curse('the silent majority', object='Honda')

Arguments not preceded by a keyword are passed in the usual fashion; non-
keyword and keyword arguments can be used in the same function call, as long
as the non-keyword parameters precede the keyword parameters. By that rule,
the following call is a syntax error:

curse(object='psychoanalyst', 'a ancient philosopher')

and the following call would cause an error at runtime, because an argument is
being defined twice:

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

curse('the silent majority', subject='Honda')

As a pleasant side effect, adding keyword arguments required optimising
function calls, reducing the overhead of a single function call by roughly 20%.

Most of the changes in the 1.4 release made Python more useful for numeric
tasks. Many of the changes were proposed by the members of the Matrix
special interest group (or Matrix-SIG), which has defined a syntax and built a
data type for manipulating matrices. (The Python SIGs are small groups of
people tightly focused on one application of Python, such as numeric
programming or database interfaces; see http://www.python.org/sigs/ for more
information about the existing SIGs.)

One such enhancement is support for complex numbers. The imaginary
component of a complex number is denoted by a suffix of “J” or “j”; thus, the
square root of -1 is symbolized as 1j . The usual mathematical operations such
as addition and multiplication can be performed on complex numbers, of
course.

>>> 1+2j*2
(1+4j)
>>> (1+2j)*2
(2+4j)
>>> (1+2j)/(2+1j)
(0.8+0.6j)

The presence of complex numbers also requires mathematical functions that
can perform operations on them. Instead of updating the existing math
module, a new module called cmath was added; old software might
malfunction if an operation returns a complex value where an error was
expected. So math.sqrt(-1) will always raise a ValueError exception, while
cmath.sqrt(-1) will return a complex result of 1j.

>>> import cmath
>>> cmath.sqrt(-1)
1j
>>> a=cmath.log(1+2j)
>>> print a
(0.804718956217+1.10714871779j)
>>> cmath.exp(a)
(1+2j)

For the sake of users comfortable with Fortran's notation, the ** operator has
been added for computing powers; it's simply a shorthand for Python's existing
pow() function. For example, 10**2 is equivalent to pow(10,2) and returns 100.

One minor new function has been requested by several people in
comp.lang.python. Python has long had a tuple() function which converts a
sequence type (like a string or a list) into a tuple; the usual idiom for converting
sequence types to lists was map(None, L). (The function map(F,S) returns a list
containing the result of function F, performed on each of the elements of the

sequence S. If F is None, as in this case, then no operation is performed on the
elements, beyond placing them in a list.)

Many people found this asymmetry—tuple() existed, but not list()—annoying. In
1.4, the list() function was added, which is symmetric to tuple().

>>> tuple([1,2,3])
(1, 2, 3)
>>> list((1,2,3,4))
[1, 2, 3, 4]

An experimental feature was included in 1.4 and caused quite a bit of
controversy: private data belonging to an instance of a class is a little more
private. An example will help to explain the effect of the change. Consider the
following class:

class A:
 def __init__(self):
 self.__value=0
 def get(self): return self.__value
 def set(self, newval): self.__value=newval

Python doesn't support private data in classes, except by convention. The usual
convention is private variables have names that start with at least one
underscore. However, users of a class can disregard this and access the private
value anyway. For example:

>>> instance=A()
>>> dir(instance) # List all the attributes of the instance
['__value']
>>> instance.get()
0
>>> instance.__value=5
>>> instance.get()
5

A more significant problem; let's say you know nothing about A's
implementation and try to create a subclass of A which adds a new method
that uses a private __value attribute of its own. The two uses of the name will
collide. Things are slightly different in 1.4:

>>> instance=A()
>>> dir(instance)
['_A__value']

Where did this new value come from? In 1.4, any attribute that begins with two
underscores is changed to have _ and the class name prefixed to it. Let's say
you have a class called File, and one method refers to a private variable called
__mode the name will be changed to _File__mode.

>>> instance.get()
0
>>> instance.__value=5
>>> instance.get()
0
>>> dir(instance)
['_A__value', '__value']

Now, this still doesn't provide ironclad data hiding; callers can just refer
explicitly to _A__value. However, subclasses of A can no longer accidentally
stomp on private variables belonging to A.

This feature is still controversial and caused much debate in comp.lang.python
when it was introduced. Thus, its status is only experimental, and it might be
removed in a future version of the language, so it would be unwise to rely on it.

Both the 1.3 and 1.4 releases included some new modules as part of the
Python library, and bug fixes and revisions to existing modules in the library.
Most of these changes are only of interest to people who've written code for
earlier versions of those modules; see the file Misc/NEWS in the Python source
distribution for all the details. If you're just coming to the language, these
changes aren't really of interest to you.

The news isn't just limited to the software. The first two books on Python were
published in October: Programming Python, by Mark Lutz, Internet
Programming with Python, by Aaron Watters, Guido van Rossum, and James C.
Ahlstrom. At least one more book is scheduled for release next year.

Two Python workshops have taken place, one at the Lawrence Livermore
National Labs in California last May, and another in Washington, D.C. in
November. Speakers discussed all sorts of topics: distributed objects;
interfacing C++ and Python, or Fortran and Python; and Web programming. See
http://www.python.org/workshops/ for more information about the workshops
and the papers presented.

In November 1996, the 5th Python Workshop was held, in association with the
FedUnix '96 trade show. The two most common topics were numeric
programming and Web-related programming. For numeric work, there's a lot of
interest in using Python as a glue language to control mathematical function
libraries written in Fortran or C++. Code can be developed quickly in Python,
and once the program logic is correct it can be ported to a compiled language
for speed's sake. There's also a benefit from using a general programming
language like Python, instead of a specialized mathematical language; it's easier
to make the numeric code accessible with a GUI written in Tk, or with a CGI
interface.

Another popular topic was Web-related programming. The Python Object
Publisher was an especially interesting system, which enables accessing Python
objects via HTTP. To take an example from the Object Publisher presentation, a
URL like:

http://www.here.com/Car/Pinto/purchase?name=Bob

causes a Python Car object named Pinto to be located, and its purchase()
method will be called with 'Bob' as a parameter. Other presentations discussed
generating HTML, writing tools for system administration, and collaborative
document processing. Brief notes on the papers are at http://www.python.org/
workshops/1996-11/, with links to HTML or PostScript versions.

As you read this, plans for the next workshop are probably in progress, though
there's no news at the time of writing; see the Python Web site for the current
status. In the past, the meetings have alternated between the Eastern and
Western U.S., so workshop #6 will probably be on the West Coast.

References

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/037/2068s1.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/037/toc037.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

FairCom's c-tree Plus

Nick Xidis

Issue #37, May 1997

c-tree Plus will work on almost every platform with a C compiler and
applications written on one platform can quickly and easily be ported to others.

• Manufacturer: FairCom
• Price: $895; additional same site programmer licenses may be purchased

for 40% off retail price.
• Reviewer: Nick Xidis

Industrial strength cross-platform btree file management.

c-tree Plus is a professional developer's package. It has a complex set of
features and can produce commercial grade multi-user applications. It will work
on almost every platform with a C compiler and applications written on one
platform can quickly and easily be ported to others. It can even work around
most of the platforms' native file handling weaknesses. If you aren't a
professional programmer odds are that you may have never heard of FairCom
or c-tree Plus. The manual says:

c-tree Plus is a sophisticated file management product
designed to be used in a variety of operating system
environments. Written in the C language it is designed
to be integrated with your C application program to
provide easy to use, yet flexible data file manipulation
and indexing.

Wow, what a mouthful! Let's cover the basics first. For those of us who don't eat
and sleep C programming, a simple, and therefore good, way to think of c-tree
Plus is as a library of C functions that manage data files and indices similar to
the way Borland's dBase worked on old DOS platforms. You'll see later that this
is professional development package with a lot more to offer than DOS dBase,
but bear with me.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

The Basics

In the simplest application, like a business's database of customers, a single
data file can be accessed through multiple binary tree (btree) index files. Each
time your application accesses the data through a different index, your data
looks like another data file sorted by the index you are using. You may create
one index on the customer's name and another on the customer's account
number. Looking though the customer name index the data appears to be
sorted by customer name. Use the account number index and through the
magic of btree indexing the same data appears to be a new data file sorted by
account number.

How to Use ISAM with c-tree Plus

Let's run through an outline of how a simple application is built. c-tree Plus
offers a full suite of Indexed Sequential Access Method (ISAM) functions that
can perform multiple file and index operations in a single ISAM function call.
The low-level c-tree Plus functions are also available if you really need to have
complete control, but the author and FairCom recommend that you stick with
the ISAM functions. In order to be fully compatible across a wide variety of
platforms, c-tree Plus uses it own data types. For example, an “int” may be a
two-byte integer on one system and a four byte integer another. With c-tree
Plus you use COUNT, which is always a two-byte signed integer.

C-tree also provides a pointer to its custom types in the form of pCOUNT, which
is the equivalent to COUNT *. One of the most important custom data types is
the IFIL, which defines the parameters for an ISAM file instances. You can
declare your data structure in your sources or use separate parameter files. I
like using the structures in my sources because when you open and close files
individually with ISAM parameter files it's all or nothing.

The IFIL structure is pretty straightforward—it contains a pointer to the file
name, a file number, the data record length and pointer to an IIDX index file
structure. Next you'll declare the parameters for the index keys within the data
records for each instance of the data using an IIDX structure containing a key
length, key type and flags if duplicate keys or null keys are allowed, and a
pointer to the index file name. The ability to have duplicate keys is an important
feature of the c-tree package. When you use duplicate keys, the c-tree system
actually pads each to make it unique. Your application doesn't have to deal with
any of it—it's all taken care of for you.

The last structure is an ISEG which tells c-tree where to find the key values in
data records via a segment length and offset. That's it! Just three basic
structures and your data schema is laid out. The functions to work with the file

structure are well thought out and very intuitive. CreateFile, OpenFile,
AddRecord, GetRecord and DeleteRecord all do exactly what you'd expect.

A Mode for Every Occasion

Now a few words about modes. There are four c-tree modes, two single-user
and two multi-user. The features vary between each but the base functionality
is the same. The simplest, single-user mode, gives you get all the features
except file security. The other mode adds Online Transaction Processing
(OLTP). C-tree's OLTP suite is awesome; you can roll back transactions, use all
kinds of save points, and enjoy wonderful logging and easy recovery. In the
author's biased opinion, OLTP is really a must for mission-critical business
applications—this package does it right.

Now for the multi-user modes, where the horsepower of this package really
shines. First is the non-client/server mode. It uses the traditional methods for
file and record locking to which Unix programmers are accustomed. Using
Linux's NFS capabilities you could use this mode to create a client/server
application, but you'll give up OLTP and a lot of c-tree's file buffering. We
compiled some simple applications and found that this mode quickly slowed as
you added users. For small businesses where OLTP would not unduly hold
things up, using NFS and multi-user mode may be a very cost-effective solution
for shared data applicants.

Now for the crown jewel of the c-tree suite: client/server mode. The package
includes one FairCom server binary for the platform you specify (Linux, OS/2,
Netware, DOS, NT, etc.); this is the only portion of the package for which source
code is not available. I was surprised to find there are servers for just about
every platform—yes, even lowly DOS can run the FairCom server and handle
record locking and file security.

On multi-tasking platforms such as Linux, the server runs in the background
and is very well-behaved. When you use client/server mode you get the full set
of OLTP, file security, and file and record locks. The FairCom server seems to be
fast, but I don't have the facilities to really load it up. Your applications
communicate with the server via TCP/IP sockets, shared memory or message
queues. I ran it using TCP/IP over Ethernet and PPP dial-up and found the
performance to be very good. Another neat trick is that in client/server mode
you're able to transparently access the local disk with or without OLTP at the
same time. For the most part, you can change modes by recompiling your
applications with the right c-tree libraries for that mode. This is very cool, since
you can go from a single-user OLTP application to a client/server application by
recompiling with a different c-tree library.

The Installation

The installation is a snap—just follow the Installation & Quick Start Guide. First,
run tar -xvf /dev/fd0 for each of the two Unix floppies that come in the box.
Then run tar -xvf ctreeX.tar to unpack the sources—yes, you get the full c-tree
Plus source code. FairCom provides its own make programs to walk you
through the build process. It's in this area that FairCom could do a little better. I
found the process of compiling the make program—running the mtmake

configurations utility which sets up the compiler flags, then running FairCom's
make program, mk--a little tedious. Especially when you have to repeat the last
steps three times if you want the stand-alone, multi-user and client/server
mode libraries. In addition you may want to edit the ctree.mak file by hand and
add your favorite compiler flags. I added -O and -Wall--yes, I'm paranoid and
like to see lots of warning messages. On the plus side their make programs will
work the same on any platform.

Conclusion

FairCom's c-tree Plus is a proven winner that's been around for a long time
(since 1979). It's a wonderful base to build serious business applications. And
with FairCom's per developer, not per platform, license a Linux system c-tree is
a very cost-effective, cross-platform development tool.

The Linux community needs more professional development tools like this. If
you are a professional or “wanna be” professional developer looking to build
mission critical business applications, I highly recommend that you take a look
at c-tree Plus and its report generator and 4GL companions r-tree and d-tree.
You can get more information at http://www.faircom.com/.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/037/toc037.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Relinking a Multi-Page Web Document

Jim Weirich

Issue #37, May 1997

When you need some help getting your web pages back in order, have the
computer do it for you.

There is something magical about writing a web-based document that just
doesn't exist with a regular linear document. Something about getting all those
links just right and in the right sequence makes a web document come alive. Of
course, getting the links just right can be a big job, especially in a document
with many pages. I found that out when I tackled my first multi-page document.

I had been writing HTML for several months when an opportunity came to
make a presentation at our local Internet Special Interest Group (part of a
larger PC users group). At that time, only a few of us were “on the Net”, but
many people were interested in what the Internet—and more specifically—
what the Web could do for them. I volunteered to give a talk on the basics of
HTML and putting together your own web page.

The group met in the library of a local university, and we had a live Internet
connection tied into an overhead projector in the room. I decided it would be
neat to write a presentation about HTML in HTML. Each web page would be a
single slide in the presentation. Links between pages would allow me to move
forward (and backward) as the talk progressed.

So I put together about 15 pages of slides and linked them so each page had a
next link to the next page and a prev link to the previous page. I put these links
at the top and bottom of each page, so there were four links on every page
(actually, I had links to the table of contents too, but let's ignore those for the
moment). Figure 1 shows how consecutive pages are linked.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/037/2027f1.large.jpg

The talk went well, but I saw several places where I could improve the talk.
When I started adding pages to the document, I made a very important
discovery: inserting pages was a big pain. If I wanted to insert a new page
between existing pages A and B. I had to update the NEXT links in page A,
update the PREV links in page B, and update both the NEXT and PREV links in
the new page. And because I had links at the top and bottom of the pages,
there were twice as many links to update. Figure 2 shows the revised links.

Automation to the Rescue

After struggling with manual updates to the pages, I decided there had to be a
better way. The relink Perl script was a result of that frustration.

Using relink is simple. First you need a file (called links) containing a list of
pages in the order they are to be visited. Omit the “.html” portion of the page
name in the links file, relink assumes the files end with that extension.

https://secure2.linuxjournal.com/ljarchive/LJ/037/2027f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/037/2027f1.large.jpg

For example, consider the following (very abbreviated) version of my original
HTML presentation. I start with an introduction (intro.html), have a page about
anchors (anchor.html) and finish with a conclusion (conclude.html). The links

file would contain:

 # Pages for a simple presentation
 intro
 anchor
 conclude

Each HTML page contains a set of links to its next and previous page. For
example, the anchor.html file contains the following links at the top and bottom
of the page.

After reviewing my short document, I feel that I really should mention URLs and
how they work before delving into anchors. So I write a new page called
url.html and wish to add it to my document. I simply edit the links file to
contain:

 # Pages for an updated, but still
 # simple presentation
 intro
 url
 anchor
 conclude

After running relink with the new page order, the links in the anchor page will
now look like:

Notice the previous link now points to the page about URLs, rather than the
introduction. The links in the other pages are updated in a consistent manner
to support the new page order. Pages can be added, deleted, or simply
rearranged just by editing the links file and specifying the new order.

Identifying Links

How does relink find the HTML links in a web page? It does so by looking for
particular patterns on lines containing a hypertext link. relink will scan through
an HTML file looking for the pattern /href\s*=/i which matches the letters href

followed by zero or more spaces followed by an equal sign. The i at the end of
the pattern allows matching without regard to upper and lower case. Lines

matching this pattern contain a hypertext link and are possible candidates for
updating.

Once a line containing a link is found, a list of link-specific patterns is tested
against that line. If a match is found, that hypertext link is updated with
information obtained from the links file, and the scanning process continues on
the rest of the file. For this process to work, it is important that each hypertext
link fit alone on a single line of text. Also, link-specific patterns must be chosen
that do not occur normally in the body of the document. If a link-specific
pattern should accidently appear on the same line as an unrelated link in the
document body, relink will automatically (and incorrectly) update that unrelated
link.

I use small GIF files for the next and previous icons, so the link-specific patterns
next.gif and prev.gif are good choices for my pages (and since I wrote relink,
these are the defaults). You can override these defaults in the links, if your links
look significantly different. If there are no unique patterns identifying your links,
you can add an HTML comment to the link line and use that as a pattern.

The LINKS File

We have seen a few simple examples of a links file in the discussion above. In
addition to page order, you can also specify user-defined link patterns using the
following line:

link: linkname pattern

The linkname identifies the type of link (next, prev, index, or anything you can
think of). The pattern is a string of characters that must appear on every link of
that type. You may override the next, prev, toc (table of contents) and up links
that relink normally works with, and you may define your own links here.

A table of contents file may be identified using the line:

tocfile: tocname

Links identified with the toc link pattern will generate a link to this file.
Unfortunately, relink will not update the table of contents with new page
orders, so you have to edit the table of contents manually to keep it up to date.
Perhaps a future version of relink can address this problem.

Nested pages can be specified by using a { on a line by itself to start a nested
list and a } to end a nested list. The page immediately preceding the nested list
is called the parent page. The first and last page of a nested list point to the

parent page in there prev and next links. In addition, each nested page will
have an up link to the parent page. The next link of the parent page will skip
over the nested list to the following page. (We assume that the parent page has
explicit links into the nested list.)

And finally, separate lists of HTML files can be specified by using a line of
dashes. next/prev links will not cross a line of dashes.

Summing Up

I have found relink to be a very useful script in dealing with web
documentation, making it very easy to update pages in long documents without
worrying about the details of manually adjusting the page links.

Jim Weirich is a software consultant for Compuware specializing in Unix and C+
+. When he is not working on his web pages, you can find him playing guitar,
playing with his kids, or playing with Linux. Comments are welcome at
jweirich@one.net or visit him at http://w3.one.net/~jweirich/.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/037/toc037.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Missing CGI.pm and Other Mysteries

Reuven M. Lerner

Issue #37, May 1997

CGI.pm, for all of its useful and amazing features, is just one of the many terrific
Perl 5 modules that isn't included with the standard Perl distribution.

I have reached the point in my career as a columnist when there is too much
mail to ignore. I'm not drowning in torrents of e-mail, mind you, but it's still a
nice surprise to receive responses from readers. Some of the mail that I have
received over the last month or two, though, warrants extended response. In
addition to answering some brief questions about CGI.pm and the guestbook
program that appeared in the January issue, I will discuss security issues
relevant to CGI programmers and Web administrators.

Where Is CGI.pm?

One of the first questions that I received—from several readers of my column
in the January issue—is, “Where is CGI.pm?” These readers were surprised that
the programs included with my column and which were supposed to work,
were failing on them. In particular, they were getting messages like this:

 Can't locate CGI.pm in @INC at - line 1.
 BEGIN failed—compilation aborted at - line 1.

What was going wrong here? Why wasn't CGI.pm on their systems?

The simple answer to this question is that CGI.pm, for all of its useful and
amazing features, is just one of the many terrific Perl 5 modules that isn't
included with the standard Perl distribution. Perl comes with a number of basic
modules, but these are only the tip of the iceberg. Most of the modules you
might want to use are available from CPAN, the Comprehensive Perl Archive
Network—such as those for database server access (obviating the need for
separate Perl executables, such as oraperl and sybperl), manipulation of times
and dates, handling of e-mail folders, and many more.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

CPAN is a set of FTP sites that mirror each other at regular intervals, and which
allow programmers to download the most recent versions of various modules
programmers have generously donated to the Perl community. One of these
modules, and one which I tend to use often in my professional life and in my LJ
column, is CGI.pm—which, as you might have guessed, is a module that makes
it relatively easy for us to write CGI programs.

The easiest way to get to CPAN is via the reflector at perl.com, a site run and
maintained by Tom Christiansen, one of the luminaries of the Perl community.
If you go to http://www.perl.com/CPAN, making sure you leave off the final
slash, you will be able to select a site near you from which you can download
various Perl modules. Alternatively, you can include the final slash, as well as
the rest of the path name relative to CPAN, and enter a random site from the
full CPAN network, as follows:

 http://www.perl.com/CPAN/modules/by-module/

This URL will result in a listing of the various module categories available for
downloading. Each category contains one or more modules; for CGI.pm, we
need to enter the CGI category, where we can find (as of this writing) the file
CGI.pm-2.30.tar.gz.

After downloading this file, use the gunzip program to uncompress the file, and
then the tar program to expand it. Do this with these commands:

 gunzip --verbose CGI.pm-2.30.tar.gz
 tar -xvvf CGI.pm-2.30.tar.gz

The doubled v option specifies additional “verbosity” when expanding files;
while you can certainly untar CGI.pm without using any verbosity, I prefer to
see what I'm expanding, rather than simply let the command go about its
business.

If you are using a system with GNU tar (as is the case with virtually all Linux
systems), you can combine these two operations by using the z option with tar:

 tar -zxvvf CGI.pm-2.30.tar.gz

After unpacking CGI.pm in this way, you should be able to enter the newly-
created directory (named CGI.pm-2.30 in the above example), configure, and
compile the file with the standard Perl module installation commands. Here is
what that process looked like on my system:

 [1008] /downloads% cd CGI.pm-2.30
 [1009] /downloads/CGI.pm-2.30% perl Makefile.PL
 Checking if your kit is complete...
 Looks good
 Writing Makefile for CGI

 [1010] /downloads/CGI.pm-2.30% make
 cp CGI/Carp.pm ./blib/lib/CGI/Carp.pm
 cp CGI/Fast.pm ./blib/lib/CGI/Fast.pm
 cp CGI/Push.pm ./blib/lib/CGI/Push.pm
 cp CGI.pm ./blib/lib/CGI.pm
 Magnifying ./blib/man3/CGI::Fast.3
 Magnifying ./blib/man3/CGI::Carp.3
 Magnifying ./blib/man3/CGI::Push.3
 Magnifying ./blib/man3/CGI.3

Now that you have configured and compiled CGI.pm, install it into your system
with the command make install. In order to do this, you will need to be logged
in as the root user, as shown here:

 [1001] /downloads/CGI.pm-2.30# make install
 Skipping /usr/lib/perl5/site_perl/./CGI/Carp.pm (unchanged)
 Skipping /usr/lib/perl5/site_perl/./CGI/Fast.pm (unchanged)
 Skipping /usr/lib/perl5/site_perl/./CGI/Push.pm (unchanged)
 Installing /usr/lib/perl5/site_perl/./CGI.pm
 Skipping /usr/lib/perl5/man/man3/./CGI::Fast.3 (unchanged)
 Skipping /usr/lib/perl5/man/man3/./CGI::Carp.3 (unchanged)
 Skipping /usr/lib/perl5/man/man3/./CGI::Push.3 (unchanged)
 Installing /usr/lib/perl5/man/man3/./CGI.3
 Writing /usr/lib/perl5/site_perl/i586-linux/auto/CGI/.packlist
 Appending installation info to /usr/lib/perl5/i386-linux/5.003/perllocal.pod

That's it. Now, @INC (the Perl variable that knows where to look for Perl
modules) will include CGI.pm, and you will no longer get those nasty error
messages complaining that Perl cannot find the file.

Note that Red Hat Linux users might want to use the RPM (Red Hat Package
Manager) version of CGI.pm (and other Perl modules) rather than the standard
distribution. The advantage of doing this is that installation updates the RPM
database and keeps track of the files on your system in an elegant way. The
disadvantage is that it often takes a few days or weeks for the latest and
greatest version of CGI.pm to appear on the Red Hat servers—and other, less
popular modules are sometimes completely unavailable as RPMs. You can find
various RPMs at the Red Hat site (and its mirrors), at ftp.redhat.com.

Guestbook Problems

I also received several notes from readers alerting us to two mistakes in the
guestbook program in the January issue. Guestbooks, as we all know, generally
contain more than one greeting from a user on a site. Thus, if we open the file
using the Perl command:

 open (FILE, ">$filename") || &error_opening_file($filename);

we are asking for trouble, since the single > operator not only opens the file for
writing, but destroys any information the file might have contained previously.
The code should really have read:

 open (FILE, ">>$filename") || &error_opening_file($filename);

which means that we want to open the file named in $filename for writing,
appending our new data to whatever might have been there before. Note that
the >> operator creates a file if none existed before, so you should feel free to
use >> for file creation and appending.

The other problem in that program, which was noticed by reader Bill Holloway,
had to do with this section of code:

 @names = $query->param;
 # Iterate through each element from the form,
 # writing each element to $filename. Separate
 # elements with $separation_character defined
 # above.
 foreach $index (0 .. $#fields)
 {
 # Get the input from the appropriate HTML
 # form element
 $input = $query->param($fields[$index]);
 # Remove any instances of
 # $separation_character
 $input =~ s/$separation_character//g;
 # Now add the input to the file
 print FILE $input;
 # Don't print the separation character after
 # the final element
 print FILE $separation_character
 if ($index
 }

Of course, since we have imported the HTML form elements into the @names

array, we have to read them out of @names, and not out of @fields, which is
what the above code does. Thus the line:

 $input = $query->param($fields[$index]);

should be replaced with:
 $input = $query->param($names[$index]);

as you can see in the corrected version of the program, which appears in Listing
1.

Individual Users and CGI Directories

Another reader, Maro Shim (writing from Korea), noticed something concerning
what I said in the February issue about having to add a ScriptAlias or Exec

directive to the HTTP server's configuration file each time a new CGI directory
needed to be added. Maro points out that this means an administrator has to
modify the files for each individual user.

Let's get into the pros and cons of letting individual users have their own CGI
directories, using Apache as an example. Then we'll discuss why this might not
be the best thing to do. Finally, we'll discuss giving each user CGI access, but
not giving them the run of the system.

https://secure2.linuxjournal.com/ljarchive/LJ/037/2175l1.html
https://secure2.linuxjournal.com/ljarchive/LJ/037/2175l1.html

Maro's suggestion is that administrators can create a symbolic link inside the
cgi-bin directory (which is /home/httpd/cgi-bin by default for the copy of
Apache running on my Red Hat Linux box), and that this link can point to a
directory inside each user's public_html directory, which typically contains the
user's HTML files.

For example, here is a listing of my personal home directory at the time of this
writing:

 [1068] ~% ls -F
 800omni.pdf News/ public_html/
 Consulting/ Text/ response1.txt
 Development/ cgicyrcode.pl test.dgs
 Mail/ chap4de.doc

Because I have used the -F option to ls, directory names end with slashes,
which makes them easier to identify. You can also identify directories by color
or boldface text if you use the --color option, but I'm too old-fashioned for that.
The public_html directory is where my personal HTML files reside, which are
available via a URL ending with ~reuven/, since my username is reuven, and the
web server is configured to look in a user's ppublic_html directory. Thus, if
there were a file index.html, it would be accessible via the URL:

 http://localhost/~reuven/index.html

(substituting an appropriate hostname for localhost, of course).

Personal HTML files are nice, and greatly reduce the amount of work that a
system administrator must do in order to run a web server on which dozens, or
perhaps hundreds, of users might want to put their own home pages. But what
about CGI programs? That's where Maro's letter comes in: Inside the
public_html directory we can create a subdirectory named cgi-bin, as follows:

 [1071] ~% cd public_html/
 [1072] ~/public_html% mkdir cgi-bin
 [1073] ~/public_html% ls -F
 cgi-bin/ test.html

Now the personal HTML directory contains two items—a file, test.html, which
(in this case) can access ~reuven/test.html, and a directory named cgi-bin, the
contents of which I can access as ~reuven/cgi-bin/. Remember, there isn't any
magic in the name cgi-bin—at this point, it acts just like any other subdirectory.
Indeed, if I were to place the CGI program elephant.pl inside ~reuven/

public_html/cgi-bin, I could access it by going to:

 http://localhost/~reuven/cgi-bin/elephant.pl

But rather than seeing the results of executing elephant.pl, we will see its
source code. This is true because we haven't told our server that it should

execute the program; we need to explicitly install ~reuven/cgi-bin as a CGI
directory. This is the most common way to create personal CGI directories. By
including (under Apache) a ScriptAlias directive in the file srm.conf, we can
create new CGI directories for each user on a system. Thus, if we were
interested in turning ~reuven/cgi-bin into a CGI directory, we could use the line:

 ScriptAlias /~reuven/cgi-bin/ \
 /home/reuven/public_html/cgi-bin

which would have the desired effect. However, this means that every time we
wish to give a user a CGI directory, we need to modify srm.conf and restart our
HTTP server.

Maro's alternative saves us this work by taking a different approach: Rather
than add new ScriptAlias directives to srm.conf, we simply tell our HTTP server
that it should follow symbolic links within the CGI directories that already exist,
using the commands:

 <Directory /home/httpd/cgi-bin>
 AllowOverride None
 Options FollowSymlinks
 </Directory>

Once we have done that, we can create symlinks to any directories that we
want to turn into CGI directories. For example, to turn /home/reuven/

public_html/cgi-bin/ into a CGI directory, we (as root, or another user with
appropriate permissions) would only have to create the symbolic link:

 ln -s /home/httpd/cgi-bin/reuven \
 /home/reuven/public_html/cgi-bin

which would then let us use:
 http://localhost/cgi-bin/reuven/elephant.pl

which physically exists in my own personal directory, but which logically exists
(as far as the HTTP server is concerned) in the /cgi-bin directory, which forces
the server to execute it.

Before you turn on CGI directories for individual users, consider the
ramifications: CGI programs are potentially an opening from the outside world
into your server. If even one CGI program is written with malice aforethought,
an attacker could gain access to your system—gathering information about
your users, for example, or using that information to alter or damage files. It
might seem convenient to give all users access to CGI programs, and it will
certainly save you time in the short run, but the security implications are too
serious to ignore.

If you cannot restrict CGI to a small subset of the users on your system, then
you should consider installing a CGI wrapper program that performs safety

checks before executing these programs. A CGI wrapper is a program which
takes a CGI program as its argument. After the wrapper performs several
security checks, it executes the CGI program—under the owner's ID, rather
than the ID normally reserved for web programs. This prevents one CGI
program from reading or changing another program's data—an increasingly
possible problem as large numbers of unrelated sites are hosted on the same
system.

One such wrapper, known as suEXEC, comes with Apache 1.2. Configuration
and compilation of this program is relatively easy and is described in detail in
the Apache documentation. Simply put, you compile suEXEC and set it to be
SUID root, so it can change to the user ID of the user, regardless of who that
owner might be. Finally, you will have to install the suexec program outside the
normal CGI directory in a location defined in the httpd.h file in the Apache
source code.

Another popular CGI wrapper is CGIwrap, which works in a similar way without
being tied to a particular HTTP server. You can read more about CGIwrap at:

 http://www.umr.edu/~cgiwrap/

It is a good idea for these wrappers to run CGI programs under a user ID other
than your HTTP server's default, letting individual users write and install various
programs of their choosing, the possibility of sending programs data that can
overflow buffers, or that might pass malicious arguments to programs using
the Unix shell is too great to ignore, particularly with the security holes for
which Unix is famous. You might want to insist that any CGI program on your
server written in Perl use the -T argument, which turns on Perl's taint system
that prevents user data from being passed to the shell without going through
some sort of filter—but of course, such checks can be ignored, and not all CGI
programs are written in Perl.

In short, there isn't any perfect solution, which means that at some point you
will have to decide whether to make your system safer (but with angry users),
or more exposed to possible damage (but with users satisfied with their ability
to run CGI programs of their choosing).

Permissions for CGI Programs

While we're on the subject of security, this is probably a good time for me to
publicly wipe away some of the egg that remains on my face in the wake of my
February column, in which I suggested that you should install CGI programs
with permissions of 777, known to non-numeric types as “a+rwx”, or permission
for all users on the system to read, write, and execute the program.

Suffice it to say that this is a grave error, as several readers noticed. Computer
security depends on plugging as many holes as possible. On networked
multiuser systems running programs that come from various sources, it's
almost certainly a bad idea to install a program having permissions that let
anyone on the system modify the contents of that program, particularly when a
simple (and probably hard-to-notice) modification or two can turn a seemingly
innocuous program into a ravenous bug-blatter beast. On a system not running
one of the wrappers mentioned here, all CGI programs are run with the same
permission, meaning that someone could write a program that can mess with
the code or data of another.

If you are the only programmer working on a particular CGI program or Web
site, then you can install your programs with 755 permission (u=rwx,ga+rx), so
that others on the system—including the HTTP server, which is generally
responsible for running CGI programs—can read and execute your code but
cannot modify it.

If you are working with others on a site or CGI program, you can set the
permissions to 775 (ug=rwx,a+rx), which lets everyone read and execute the
program, but allows only the owner and members of the file's group to edit it.

There are probably times when it is appropriate to install a CGI program with
777 (a+rwx) permission, but these are rare.

That's it for the mailbag for this time. Next month, we'll return to a discussion
of how to make life easier for non-programmers who might want to modify
entries in tables on disk, by writing a few small CGI programs which can read
and write files efficiently and easily.

Reuven M. Lerner has been playing with the Web since early 1993, when it
seemed like more like a fun toy than the World's Next Great Medium. He
currently works as a independent Internet and Web consultant from his
apartment in Haifa, Israel. When not working on the Web or volunteering in
informal educational programs, he enjoys reading on just about any subject,
but particularly politics and philosophy, cooking, solving crossword puzzles and
hiking. You can reach him at reuven@the-tech.mit.edu or
reuven@netvision.net.il.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/037/toc037.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

World Wide Web Journal

Danny Yee

Issue #37, May 1997

The range of topics covered is immense.

• ISBN: 1-56592-211-5
• Publisher: O'Reilly & Associates
• US$24.95 per issue, US$75.00 per year
• Reviewer: Danny Yee

Issue 1 of the World Wide Web Journal contained fifty-nine papers, fifty-seven
from the Fourth International World Wide Web Conference (held in Boston in
December 1995) and two from regional conferences. The range of topics
covered is immense. To list just a few (in no particular order): why the GIF and
JPEG formats aren't good enough for really high quality graphics; low-level
security in Java; the results from the 3rd WWW Survey; an analysis of
Metacrawler use; caching systems; a filtering system to provide restricted
access to the Web; a PGP/CCI system for Web security; the Millicent system for
financial transactions involving small sums; smart tokens; and better support
for real-time video and audio. There are also papers on the use of the Web in
education, on cooperative authoring tools, on Web interfaces to database and
software systems, and a cornucopia of other things.

Issue 2 was a disappointment. It consisted solely of standards documents:
Requests For Comment (RFCs) numbers 1630 (URIs), 1808 (Relative URLs), 1736
(IRL recommendations), 1866 (HTML 2.0), 1867 (Form-Based Upload), and
unallocated (HTML Tables); Internet drafts on HTTP 1.0, PEP HTTP/1.1, and
HTML Internationalization; and W3C drafts on PNG and Cascading Style Sheets.
Since all of these documents are freely and easily available on-line and several
have already been superseded, this is really of limited value. (Nicely formatted
bound versions of standards documents are useful, but only for the standards
that have some sort of permanence.)

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Though shorter, issues 3 and 4 strike a better balance between background
material, standards and technical papers. As background material, issue three
contains an interview with Tim Berners-Lee and descriptions of other World
Wide Web Consortium staff. The technical papers are mostly about Web
demographics and “geography”: the Nielsen/CommerceNet, GVU, and White
House surveys; systems for statistical analysis of traffic; visualisation of Web
connectivity and traffic; and the implementation of national Web cache systems
in the United Kingdom and New Zealand. Issue 4 is mostly devoted to HTTP: it
contains technical specifications for and informal descriptions of HTTP 1.1, as
well as papers on state management (cookies), digest authentication, and
future directions for HTTP. There are also papers on PICS, PNG, distributed
objects, and distributed authoring.

Though few assume much technical background, the papers in World Wide
Web Journal are mostly technical in focus: they are not for everyone who runs a
Web server or authors HTML. However, for those concerned with the future of
Web technology—because they are directly involved in protocol or system
development, because they need to prepare for future applications or out of
simple curiosity—the journal is a good way of keeping up with the most
important developments. As a quarterly journal, it fills a niche between books
and information sources on the Web itself.

World Wide Web Journal can be sampled on the Web at http://www.w3.org/
pub/WWW/Journal/.

Danny Yee receives a complimentary subscription to World Wide Web Journal
but has no stake—financial or otherwise—in its success. He can be reached at
danny@cs.su.oz.au.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/037/toc037.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Letters to the Editor

Various

Issue #37, May 1997

Readers sound off.

Code Examples

Any chance you could start putting the LJ code examples on the web site, so I
don't have to type the stuff in? Especially hairy stuff like the PGP patch on page
6 of the February '97 issue. Sheesh. Really, I think this would be great. —Peter
Watkins Washington, DC peterw@clark.net

We think this is a good idea too, and starting with this issue, example code can
be found at ftp://ftp.linuxjournal.com/lj/listings/issue##/. The files are tar, gzip
files, one for each article, named article##.tar.gz. There will be a footnote to
each article that has listings in it, giving you the article number.

Acronym Use

My first question is, “What does CGI stand for?” The second question is, “Why
did the editor/s never ensure that the abbreviation was defined at least once in
the magazine?” This lack of definition of acronyms is very annoying to me since
the computer world is so chock full of acronyms. Acronyms in this environment
are also very context-sensitive—so much so that defining terms like this should
be mandatory in every article published anywhere. —Mac Bowles Senior
Software Engineer Lockheed Martin Astronautics
kbowles@claven.mmc.den.com

First, CGI stands for Common Gateway Interface. Second, I agree that tossing
acronyms around without defining them is annoying, and plan to be more
careful in the future.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Linux in Schools

I have read the letter to Linux Journal from Mr. Jack McGregor, who is pushing
usage of dumb terminals for schools (low cost). I am a Linux consultant.
However, I am not pushing dumb terminals, but Linux-based X terminals using
old 386 and 486 PCs. My experience with low end 486s demonstrates that
indeed they are very fast and fun to use to operate major desktop packages
(WordPerfect, Netscape, Applixware and StarOffice are a few I have tried). They
can also run games (e.g., Doom).

I have customers who have turned to this solution not to save money but to
gain raw speed. For example, one is using a dual Pentium Pro 200MHz with
192MB of RAM as a server for 10 users (C++ developers). Everything is in RAM
all the time for all users. This beats any network when it comes to loading
software or searching through directories and so on. In one case, the speedup
they are getting by sharing the same server instead of the more standard
Windows-to-server relation is close to a factor of 10.

While X is an old technology for some, Linux is making it into a revolution
because of its low cost. —Jacques Gelinas jacques@solucorp.qc.ca http://
www.solucorp.qc.ca/linuxconf/

Red Hat Install Problems

I have been using the Slackware distribution 3.0 (1.2.13 kernel) for over a year. I
wanted to upgrade to the 2.0 kernel, and decided that a new CD-ROM
distribution would be convenient. After reading about Red Hat 4.0 in the LJ
Readers' Choice Awards and an InfoWorld review that selected Red Hat 4.0 as
one of the two best operating system releases in 1996 (the other was NT
workstation), I decided to order.

My installations (about a dozen trials) were plagued with random segmentation
faults, stack-dumps and reboots. The Red Hat support team responded as
advertised and suggested hardware (i.e., CPU, RAM, cache, motherboard) was
producing my problems. The Red Hat technician pointed me toward RAM or
cache because I just had a brand-new motherboard installed, and he presumed
that the motherboard or the brand-new cache was not a problem. Finally, the
Red Hat technician suggested that:

“Red Hat is sometimes not able to run (for unknown reasons) on some
hardware that will run Slackware.” (E-mail from Red Hat support.)

I had my RAM diagnosed by a local computer repair shop that has a hardware
technician who is a also Linux guru. No problems were reported with the RAM,
but the technician could not duplicate my installation symptoms.

Finally, a bit dazed and still suspecting the RAM, I purchased some extra RAM. I
tried the installation one last time, using only the new RAM—I still could not
successfully install Red Hat 4.0. Alas, I am back to the Slackware 3.0 and out $60
for the Red Hat.

I am truly disappointed that I cannot get Red Hat 4.0 working. It seems Red Hat
has so much to offer new Linux users in terms of configuration, installation, etc.
But, as Microsoft can attest, it will be difficult for any commercial distribution to
support every PC configuration. My PC is the evidence.

All is not lost, though. As the web master for our software manufacturing firm, I
take care of the Intranet Web pages. We need a new internal web server, and I
am adamant that it runs on a Linux box. Maybe the Red Hat distribution can
foot this bill. For my PC though, I am sticking with Slackware. —Jeffery C. Cann
Software Engineer jcann@intersw.com

Shopping for Linux

Cory Plock wonders why he can't find Linux distributions on the shelves of local
software stores (LJ February 1997). Perhaps he's just living in a technologically
repressed area. I just checked my nearest shopping-mall computer store here
in Quebec City: They have the 6-CD InfoMagic package and the 4-CD Walnut
Creek distribution, both up to date and competitively priced. A nearby store has
several copies of two books on Linux. The distribution mechanisms must exist
—encourage local dealers to use them. —Don Galbraith dsg@clic.net

On-line Linux Users Group

Hi. I have been a long time reader of LJ and it has been a great help to me, and I
am sure that applies to many in the Linux community. Now, my friends on the
Net and I have also done something as a contribution to Linux which I thought
would be interesting to you and helpful to your readers. This is to create an On-
Line Linux Users Group for people interested in learning more about Linux,
providing help to other Linuxers and promoting Linux. Our web address is:
http://www.linuxware.com/. —Peter Lazecky peteri@linuxware.com

AutoMount Article Comment

I am using the version of amd that comes with Red Hat 4.0. The NFS hosts are
running SunOS 4.1.4 and Solaris. I found the suggestion that amd is relatively
bug free incorrect. In the first few days of using it I found two important bugs.
The first is that it confused the node name of one machine with the IP address
of another machine. That is, I found directories from one machine under the
name of the other in the /net directory. The second bug I have experienced
several times. If a directory is unmounted, amd doesn't seem to know how to

mount it for several minutes afterwards. Both of these bugs result in directories
disappearing—including my home directory. It can make it very hard to justify
using Linux when these major type problems exist.

As you can see, this is a big issue for me. I have seen several postings in
dejanews referring to other problems with amd. I would like to see more
support, but up to this point I have found very little in the way of answers to
most questions about amd. Thanks for the article anyway. —David Uhrenholdt
duhrenho@vette.sanders.com

Larry Wall Article Comment

I read Larry Wall's article on Perl on the way in to work today. My work involves
C, Korn shell and Perl. I am convinced that Perl is a marvelous language. Mr.
Wall's article supports that.

I understand the notion of creativity as a function of a large palette (...there's
more than one way....) and the theory that “form follows function”. My
conclusion is that Perl is unacceptable as a development tool because I cannot
support it. It takes too long to discover (glean, figure out, guess at, puzzle out)
which of the myriad possible methods was used by the original developer—
even when that was me. I will continue to write Perl for fun and use more
documentable, supportable languages for important systems.

I also wonder if Mr. Wall's writing would be a little more effective if he didn't
attempt to be funny in every paragraph. He is the linguistic equivalent of the
aggressive graphics that prevent many people from being able to read that very
trendy San Francisco- based magazine on pop-wired culture. —Brandon
Sussman #VATAcc70713@vantage.fmr.com

Another Algorithm for Polygons

5 Feb 1997: I enjoyed the interesting article by Bob Stein on algorithms for
deciding whether a point is in a polygon in your March issue (“A Point about
Polygons”). It is too bad that Bob wasn't familiar with the algorithm used for this
in the WN web server (see http://hopf.math.nwu.edu/), as it has some
interesting similarities and differences when compared to the algorithm he
describes. Like Stein's it uses integer (actually long int) arithmetic rather than
floating point.

I first used this algorithm in a version of WN released in July of 1995. As with
Stein's algorithm we start by translating, so the test point is at the origin.
Instead of counting the parity (evenness or oddness) of the number of
crossings with the positive Y-axis, the actual signed number of crossings is
counted (I used the positive X-axis instead of the Y-axis, but that is immaterial).

More precisely, the algorithm counts +2 if an edge crosses the positive X-axis
with positive slope and -2 if it crosses with negative slope. If an edge ends on
the positive X-axis, it gets a count of only +1 or -1 depending on the slope. If the
edge lies entirely in the positive X-axis, it gets a count of 0. If the origin (test
point) is actually on any edge, we declare that the point is in the polygon and
quit. After all edges have been counted, we declare that the test point is outside
the polygon only if the total count is zero.

The implementation in WN is about three times as long as Stein's
implementation, largely because I wanted to get all the special cases right even
if in practice they don't matter much. In particular, if the test point is on an
edge, it is always declared in the polygon. Also polygons with only two sides or
degenerate polygons (like points) work properly.

There is one very big difference in the way the two algorithms behave when the
polygon is not simple (i.e. crosses itself). Imagine a five-pointed star drawn in
the usual way without lifting your pencil from the paper. With the even/odd
count only points in the five triangular “tips” of the star will be considered
inside while points in the pentagonal central region will be considered outside.
The WN algorithm, on the other hand, will count all these points, tips and
center, as “inside”. This is, in fact, the reason I chose this method rather than
the even/odd count.

The reason this difference occurs is not too difficult to understand. Imagine the
polygon is a stretched rubber band held in place on a table with thumb tacks at
each vertex. At the test point we erect a vertical post perpendicular to the table.
Now remove all the tacks and let the rubber band contract into the post. It may
wrap around the post some number of times positively or negatively (i.e.,
counter-clockwise or clockwise) or it may not be hooked on the post at all. The
even/odd algorithm is counting whether the number of times it wraps around
is even or odd, while the WN algorithm is counting the full number.

If the polygon does not cross itself the actual number can only be 0, +1, or -1,
so the even/odd algorithm works fine. With the five-pointed star, if the post is
put in the central region, the rubber band goes around twice, and so the
algorithms give different answers.

If anyone is interested in the WN implementation, just download the
distribution and in the file wn/image.c look for the functions dopoly() and
segment(). The distribution can be found at http://hopf.math.nwu.edu/. —John
Franks john@math.nwu.edu

Archive Index Issue Table of Contents

 Advanced search

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/037/toc037.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

 Advanced search

Changes at LJ

Marjorie Richardson

Issue #37, May 1997

Gary is now SSC's Technical Editor and I am Managing Editor of Linux Journal

In an amazing act of prestidigitation Phil Hughes waved his hands and Gary
Moore and I traded positions on February 1. As a result, Gary is now SSC's
Technical Editor and I am Managing Editor of Linux Journal. This is one of those
win-win situations—Gary gets to spend more time editing and I get to tell
everyone what to do. I love managing things. I suppose I have a strong
controller streak to my psyche.

I have worked with computers for over 15 years now, mainly programming
scientific applications in Fortran for geophysical (oil) companies. I also did a lot
of technical writing in the form of software documentation. The writing was
always the most fun, so I've enjoyed my work here at SSC and expect to
continue to do so as Editor of Linux Journal. Since coming to work for SSC, I've
done editing of reference cards, such as Java and HTML, as well as lots of copy
editing for Linux Journal. And of course, I made sure that Linux Gazette got
posted every month. Actually, it was the time spent on LG that convinced me
that I could handle the job for LJ. I have retained custody of Linux Gazette. I
have too much fun with LG to give it up, and I intend to have just as much fun
with Linux Journal.

A Couple of News Items

The project led by Alan Cox for Linux users to sponsor a penguin at Bristol Zoo
in Swansea, UK is now complete. The sponsorship was done in Linus Torvalds's
name as a 1996 Christmas present. Details can be found at http://
penguin.uk.linux.org. Sounds like a fun project for user groups.

The first virus able to infect a Linux system has been found by McAfee
Associates. The virus, named Bliss, has spread to Linux systems, as many Linux

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

users play Internet games while logged in as root. To learn how to avoid this
danger, check out this month's article “Safely Running Programs as Root”, by
Phil Hughes.

If you have a spare Linux CD to give away, you can list your e-mail address at
http://emile.math.ucsb.edu:8000/giveaway.html. Those people who need them
will contact you, send you a self-addressed stamped envelope and then you can
send them the CD. If you would prefer to lend a Linux CD locally, you can also
sign up to do that at the site. This is a worthy project that should help to spread
the word about Linux.

This Month

This month our focus is on Linux ports, and we have several articles on
different ports including Alpha, Mac and the PowerPC. Also, thanks to
Alessandro Rubini, Kernel Korner has returned to our pages.

Beginning with this issue Linux Journal will have tar, gzip files containing the
listings for our articles. You can grab the files for this issue from ftp://
ftp.linuxjournal.com/lj/listings/issue37. As time permits, we will add files
containing article listings from previous months.

Next Month

Next month we'll focus on networking. Planned are articles on multi-platform
networking with Linux, on communicating between home and office and on
setting up a Sun SPARCstation.

Send me any ideas or suggestions you might have for articles or Linux Journal
in general. My e-mail address is info@linuxjournal.com. —Margie Richardson
Managing Editor

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/037/toc037.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Linux and Web Browsers

Phil Hughes

Issue #37, May 1997

Netscape 3.01 for Linux exists and is still not supported.

Back in LJ issue 20, I wrote about how Netscape said they intended to drop
Linux from the list of supported operating systems. To most of us this wouldn't
have been a surprise as Linux has never been supported by Netscape—only an
unsupported version of Netscape has been available for Linux.

Well, things haven't changed much. Netscape 3.01 for Linux exists and is still
not supported. In that same article I suggested that if we could write a
complete operating system as a community effort that we could do the same
for a web browser. Then I went on to suggest that starting with Arena, the
W3C's test platform, and building the best web browser for Linux from it was a
reasonable idea.

It probably was a reasonable idea, but it never seriously happened. We all
continue to use Netscape or Mosaic and hope for the best. Another thing
happened recently that makes me nervous: the Mosaic 2.8 team was moved to
another project, so we really are pretty much at the Netscape or nothing stage.

The Lights Come On

I was thinking about this yesterday while reading the Linux newsgroups looking
for a possible topic for this column. The answer was there. There was a press
release from Yggdrasil Computing that announced that they would be working
on development of Arena. To quote the announcement,

The World Wide Web Consortium has approved
Yggdrasil Computing to coordinate future
development of Arena, a powerful graphical web
browser originally developed as the Consortium's
research test bed.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

All the work will be under the GPL, meaning that it will be available to anyone—
commercial or non-commercial. This isn't a Linux-only effort. Yggdrasil also
plans to make it available on other Unix platforms and MS-Windows. The MS-
Windows version will be accomplished by joining forces with Pearl Software
which offers an X-Windows emulator.

More Players

I suggested this topic to Margie Richardson, LJ's Managing Editor and also the
Editor of Linux Gazette, our on-line Linux magazine (http://www.ssc.com/lg/),
and she handed me information on another effort called the Linux Browser
Project. I went off web searching and found that there is another alternative to
Netscape in the making.

The first thing I found was that the project has been renamed to Mnemonic.
This is because, while Linux is the development platform of choice, the goal is
to produce a free browser available for many different operating systems. To
start, here is the “What is” from their web page:

The basic goal of Mnemonic is to produce a free,
usable and maintained World Wide Web Browser for
many different operating systems. The intent is to
make the browser as modular as possible, to make it
easy to add new features and to port to different
interfaces and platforms. The base browser will most
likely support HTML 3.2 and Cascading Style Sheets,
with support for things like Java and HTML Extensions
being distributed as add-on modules. Other proposed
features include IPv6 support, the ability to auto-
download modules when needed, and a highly
customizable user interface.

Sounds good so far. But, why another project? Well, they have a page that
addresses that on their web site. They suggest that configurability and a
modular architecture is what has been missing from other browsers. This was
certainly true of Mosaic where a virtual re-write was started.

This modular approach includes the user interface. That means that those who
love Motif will be able to use a Motif UI, those who love Tk will be able to use a
Tk UI and so on. They also have a projected release date of July 14, 1997, which
makes you think that they are serious.

Both of these projects are for free software. And Linux has proved that
developing in a free environment can produce viable products. In fact, the
Arena project predated Netscape Navigator and Microsoft Internet Explorer
and some innovations in Arena were later used in these commercial products.
If you have interest in the Web and are looking for a project, check these out.

Where to Find Out More

Linux Trademark Status

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/037/2219s1.html
https://secure2.linuxjournal.com/ljarchive/LJ/037/2219s2.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/037/toc037.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Connecting SSC via Wireless Modem

Liem Bahnemann

Issue #37, May 1997

Having fun using wireless modems as a LAN bridge between SSC offices.

Recently, SSC needed more room and rented another office. The remote office
needed a connectivity solution to link it to the original office's LAN. Several
options were available to us:

1. Frame relay (56k, T1...)Advantage: high speedDisadvantage: high cost of
line and hardware

2. ISDNAdvantage: relatively high speedDisadvantage: potentially expensive
hardware, long wait for installation

3. 28.8k serialAdvantage: cheap hardware, readily availableDisadvantage:
low speed

4. Wireless networkingsimilar to ISDN
5. Guerrilla Ethernet (run our own coax down the street) Advantage: 1.555->

2.5 Mbits fastDisadvantage: street sweepers

We explored each possibility, and decided that outside of the probably illegal
guerrilla Ethernet, wireless modems would be the most fun to install and use.
We contacted various vendors for wireless products and found Freewave had
the highest-speed wireless modems available. Freewave sent us a pair of
modems to test at the office.

The Freewave modems we received were small and easy to configure. The
manual stated they could potentially be used at a range of 20 miles, line-of-
sight. We would soon see if that was a true statement.

How Wireless Modems Work

Freewave wireless modems act as a null-modem cable, and unlike regular
modems, do not need dialing. The modems look for other modems on their

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

frequency and link to them. Wireless modems can link point-to-point, i.e., two
modems, or multiple modems can be connected to a single modem that acts as
a hub. Point-to-point, the modems are configured as a master and a slave. One
calls the other and a link is established. The number they call is an internal,
firmware encoded number.

Configuration

The firmware of the Freewave modem is accessed by pressing a dimple on the
front plate of the unit, which puts the modem into configure mode. Connecting
to the serial device with minicom or xc at 38400 bps enables you to access the
firmware menu. You then have the options to configure the speed the unit will
use to talk with other modems, the numbers of the other Freewaves to call, and
the behavior of the unit with the other modems—as a slave or a master.

Since we wanted point-to-point usage, the number was set to the number of
the second modem, and the speed was set to 115200 bps.

Getting the Modems Talking

Exiting the firmware puts the unit back in communication mode. It took several
configuration tries to get each Freewave configured with the right speed as
master and slave. Finally, the status lights on the units showed us a link, and
flashes of packets could periodically be seen. We noticed that at 115200 bps,
with the modems 20 feet apart, we weren't communicating well. Characters
could not be sent either way even though a link was definitely established. Our
communication test initially consisted of using minicom to send “Hello? Is it
working? See this?” back and forth between modems.

We dropped the speed back to 9600 and established a reliable, clean link. We
also discovered that sometimes the firmware on one of the modems would
suddenly configure itself to be the master instead of the slave and talk at odd
baud rates like 230400 bps.

After an hour or two of playing with the firmware, we were able to get a reliable
115200 bps connection at 20 feet. Now it was time to test a link between the
two offices. The new office is south of the old at a distance of approximately
1500 feet with a large nursing home and several houses in between (read: not
line-of-sight). After spending 2 or 3 hours beating on bad serial ports and slow
16450 UART-equipped hardware, we finally built a system with 16550As and
were able to test the modem. The modem was placed in the window, just in
case an extra wall might make a difference. After a bit more banging on the
firmware, we finally established a connection with the office at 115200. We had
link speed and reliability with a couple of transfers of the Linux kernel back and
forth, and we also met with some problems. Occasionally the link would freeze,

which meant resetting the modem, which in turn sometimes caused a glitch in
the firmware. Other times it would transfer flawlessly at 7-8Kbytes/sec, a
respectable performance. All in all, we decided that this performance, though
quite good, was not robust enough to act as a LAN bridge to the remote office.
Therefore, we packed up the modems and sent them back to Freewave.

I believe that with line-of-sight or at least minimally-blocked usage these
modems could yield quality results. They're the fastest wireless modems we
found—others we researched had maximum rates of 9600 bps. The initial cost
was high, at about $1500 per unit, but given the costs of similar performance
hardware, such as ISDN routers, DSU/CSUs and such, the overall cost was
actually low, since there are no line charges. With improved reception (boosters
were very costly) these units would have served their purpose quite well.
Without it we decided to use an ISDN instead.

Liem Bahneman quit school at the University of Washington to pursue more
important research into the area of Linux-induced insomnia. Nowadays, when
Liem isn't making sure the web servers at the Cobalt Group aren't crashing,
he's likely to be found playing with Legos or his Star Wars memorabilia
collection. He can be reached via e-mail at roland@cobaltgroup.com.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/037/toc037.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Paths

Lynda Williams

Issue #37, May 1997

For all the newbies out there who have just acquired their first computer, here's
the map for finding your way around the many paths inside it.

Starting at Home

After logging in, type pwd at your Linux prompt, and you will see something like
this:

/home/williams

This is a path; in this case, the path for my home directory. A directory is where
files are kept. They can also contain other directories. The path /home/williams
is shorthand for “The directory williams which is in the directory home, local,
which is in the root directory of the file system.” Each word between /
characters is a name; what it names is a directory. The pwd command reported
/home/williams to me, because it was my “Present Working Directory,” more
commonly known as the current or default directory.

The current directory is a simple idea with many faces. Immediately after
logging in, it is your home directory. Later, it could be any directory on your file
system. Your current directory is really that of your shell. Other processes have
their own, which change independently. A single process with multiple sub-
windows may even maintain a current directory for each.

It is useful to be aware that a command-line user will say “I am in /etc/skel”,
while a graphical interface user of the same system would report that /etc/skel
is “open”. Both mean the same thing. The current directory is the assumed
target of your commands and any files requested. Paths let you refer to other
directories. Unfortunately, learning to use them can be needlessly painful due
to the historical choice of nomenclature.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Puzzling Nomenclature

Nomenclature describes how things are named. The / symbol, in path names,
suffers from a nomenclature quirk known as overloading, which means it can
be correctly interpreted in more than one way.

If a path begins with /, the meaning is “the root”. The root is itself a directory.
[Note that /, meaning the root directory of the file system, should not be
confused with /root, a directory in the / directory—Ed] Think of it as the boss
directory which isn't contained by any other. Beginners often fail to “see” root
at all, because the visual impact of a leading / is small. This is a serious error. A
/ between two directory names, after root, merely separates them. The / is not
a directory—it is just a delimiter. Try this simple test to see if you've got it. How
many directories are there in /home/williams?

The answer is three, not two. The two most first-year students in my course get
are /home and /home/williams. About a quarter every term fail to count the
root itself. If we step beyond paths to files, the nomenclature becomes
ambiguous. No matter how closely we inspect /home/williams/foo, we cannot
deduce whether foo is a file or a directory. If the name were /home/williams/
foo.txt, we might believe foo.txt is a file, but it is possible for directories to have
extensions, and common for files to omit them.

What do the following two examples tell you about the names lists and weba?
(The cd [Change Directory] command resets your current directory.)

Example 1
$ cd /home/lynda/lists
$ pwd
/home/lynda/lists

Example 2
$ cd /home/lynda/weba
bash: /home/lynda/weba: Not a directory
$ pwd
/home/ftp/pub/weba

You should be able to deduce that lists is a directory, but weba isn't. Of course,
there are plenty of ways, starting with past experience, to resolve ambiguity.
The file command is another, as are the -F and -l options for the ls command.

Relative paths

So far, all my paths have begun with the root. Path names which begin this way
have the same meaning no matter what the current directory is. They are called
absolute paths. For example, the command:

$ cd /home/ftp/pub/weba

will make /home/ftp/pub/weba my new current directory regardless of the
existing one. What would the command below achieve?

$ cd weba

Any reference to a file or directory which does not begin with a slash (/) is
relative. This begs the question “relative to what?” Relative to the current
directory. The command above, therefore, will work as desired only if my
current directory is already /home/ftp/pub. Consider the following attempts to
use relative paths to change directories. The prompt has changed to show the
current directory before the $ symbol, and I have taken liberties with spacing to
enhance readability.

Example 1 (success)
/home $ cd ftp/pub
/home/ftp/pub $
Example 2 (failure)
/home $ cd pub
bash: pub: No such file or directory
/home $
example 3 (failure)
/home $ cd /ftp/pub
bash: /ftp/pub: No such file or directory
/home $
example 4 (success)
/home $ cd ..
/ $

Relative paths are just absolute paths with the current directory assumed as a
prefix. They are more common than absolute ones, as we tend to work out of
the directory of greatest interest to us at the moment. Note, however, that it is
wrong to start one with a /, as in example 3, because doing so makes the path
absolute. Sticklers for syntax will note we lose a delimiter / in the bargain.

Two special components in building relative paths, are . and .. which stand for
“this directory” and “the directory containing this directory ”, respectively. You
can use them alone, as in example 4, or with other components as in this fairly
typical example of backing up and going forward to a different directory:

/home/ftp $ cd ../williams
/home/williams $

Building with Paths

Confidence in using paths helps with a surprising variety of more complex
topics. The environment variable $PATH is a list of ordinary paths separated by
colons. The shell uses it to search for program files to execute. Many programs
use special variables to establish the base path for their operations; it is useful
to know how to construct a path when one is called for as a command
parameter.

We saw how paths feature in the absolute names of files. They also appear in
URLs (Uniform Resource Locators, commonly associated with the World Wide

Web). Paths may be one of the first things you learn, but their applications are
endless.

Lynda Williams (http://quarles.unbc.edu/ljw.html) mentors faculty at the
University of Northern B.C. in the development of web sites, supported by her
Linux server, (http://vaughan.fac.unbc.edu/ctl) and teaches survival tactics for
computing to first-year students in her computing applications course (http://
quarles.unbc.edu/cpsc150). Her pioneering work in the community networking
movement (telnet freenet.unbc.edu) is another expression of her interest in
popularizing computing technology. She can be reached via e-mail at
williaml@unbc.edu.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/037/toc037.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

ncpfs—Novell Netware Connectivity for Linux

Shay Rojansky

Issue #37, May 1997

Linux supports a very wide array of networking protocol, and software exists to
tap into virtually any network server, and even become a server for non-Unix
clients.

Today's networks are becoming increasingly complex and diverse. Often a
system administrator is forced to face a network of more than one operating
systems, and sometimes even more than one communication protocols. Not
surprisingly, one platform that manages to adjust in these harsh conditions is
Linux. Linux supports a very wide array of networking protocol, and software
exists to tap into virtually any network server, and even become a server for
non-Unix clients. Samba provides client/server for Windows 3.11/95/NT
networks, Netatalk takes care of Macintosh's Appletalk, and in this article I will
discuss yet another program that allows any Linux machine to become a full-
fledged Novell client.

Novell networks are among the most popular ones in the world. Therefore, it is
no surprise that some means of interacting with Novell servers has evolved. A
typical Novell network consists of one Novell server, usually running dedicated
to Novell, and many clients (PCs usually running DOS/Windows). Unlike NFS
Unix networks, there is a very big software difference between the Novell
server (usually running a special OS) and the clients (usually running DOS/
Windows with Novell drivers). While commercial products exist that enable
interaction between Novell and Unix systems, ncpfs provides a powerful, easy
and free way of doing it.

ncpfs is a suite of programs created and maintained by Volker Lendecke
(lendecke@namu01.Num.Math.Uni-Goettingen.de) that let you access a Novell
server in various ways. The primary service a Novell server provides is its files. A
Novell server holds several volumes, each usually corresponding to a hard drive
or CD-ROM. ncpfs lets you easily mount a Novell server—the directory used to
mount the server will contain a directory for each volume accessible on that

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

server, and in those directories will be the actual directories and files. Note that
a Novell server allows you to see only what you have permission to see.

How to Use NCPFS

Get the latest version of ncpfs from: ftp.gwdg.de:/pub/linux/misc/ncpfs or from:
sunsite.unc.edu:/pub/Linux/system/Filesystems/ncpfs. Untar it, and compile the
tools by typing make and make install. Consult the README file, if you have any
problems.

ncpfs utilizes the NCP (Novell Core Protocol) protocol, which sits on top of IPX
(Internetworking Packet eXchange). First, make sure that IPX support is
available in the kernel (or as a loadable module). Then, you must configure the
IPX interface. ncpfs comes with the Linux IPX tools, which allow you to create an
IPX interface and a route, somewhat like ifconfig and route. The easiest way to
configure your IPX system is by doing this:

ipx_configure --auto_interface=on \
 --auto_primary=on

This attempts to automatically determine everything about your interface, and
to set it as the primary one. If this doesn't work, you will have to try to configure
manually. For more information consult the man pages for ipx_configure,
ipx_interface, ipx_internal_net and ipx_route. Now you are ready to run ncpfs
utilities.

All the ncpfs tools work in a similar fashion. Since each operation requires
accessing a Novell server, almost each command execution requires that three
things be supplied: the server name, the user name and the password. There
are two ways to do so:

1. Use command-line parameters: <command> -S <server name> -U <user

name> -P <password>. This is usually a tiresome method since EVERY
command needs to have these three switches fed to it.

2. The file ~/.nwclient may contain information about servers. Each line may
contain information in the following syntax: <server_name>/<user_name>

<password>

If you specify the -S command-line parameter, the program will automatically
get the user name and password from the appropriate line of this file. If not, it
will use the first line.

To cut straight to the interesting stuff, in order to mount a Novell server, simply
type:

ncpmount <mount_point>

Again, add switches for the server, user and password or use ~/.nwclient.

Your mount point will contain a directory for each volume, containing the actual
files, in the Novell server. ncpmount also provides many options to control the
mounting, such as the UID and GID of the file hierarchy. Consult ncpmount.8
for more details. Note that a Novell server can be mounted several times from
the same computer. Note also that ncpmount and ncpumount do NOT have to
be setuid, which enables any normal user to mount their accounts on a Novell
server, opening yet more possibilities for ncpfs application in the real world. For
example, to access the file \LOGIN\LOGIN.EXE on volume SYS, on the Novell
server MYSERV on /mnt, as the user supervisor with the password 12345 (let's
hope there aren't many of these out there), execute:

ncpmount -S MYSERV -U supervisor -P 12345 /mnt

OR have the following line in ~/.nwclient:

MYSERV/supervisor 12345

and execute:
ncpmount /mnt

Once the Novell server is mounted, the file LOGIN.EXE will be represented as /
mnt/sys/login/login.exe.

In order to print to a Novell server, simply execute:

nprint -q <queue_name> <file>

This will contact the specified printer queue on the server and send it <file> as a
print job. See nprint.1 for more details. Note that ncpfs also provides a print
server, allowing Linux to connect to a Novell server's queues and transfer jobs
to the Linux printing system; see pserver.1 for more information.

Another important functionality provided by ncpfs is direct access to the
bindery. The bindery is the database where a Novell server keeps all
information about users, groups, and just about everything else. Unfortunately,
the bindery can normally be accessed only by using tools provided by Novell.
While these tools are usually very colorful and user-friendly, when it comes to
manipulating hundreds of users and groups they don't pack the punch. In Unix
this problem is solved by providing direct access to the database—/etc/passwd,
for example, and using general-purpose tools such as sed, awk and perl. ncpfs
provides tools to access the bindery and modify it, allowing the savvy system
administrator to write flexible shellscripts to modify a Novell server's bindery.
So, for example, if you wish to change every single user's name so that the third
letter is x, you can do so quite easily. This ability means that even if you don't

need to access a Novell server from a Linux machine you might still find a use
for ncpfs for administrative purposes.

The tools nwbocreate, nwbols, nwboprops and nwborm allow you to
manipulate bindery objects (such as users, groups, print queues, etc.); the tools
nwbpadd, nwbpcreate, nwbprm, nwbpset and nwbpvalue will change the
properties of objects. These base-functionality programs open up endless
possibilities for Novell management utilities for Linux, even more diverse than
the ones that exist for DOS/Windows, since no programming libraries are
normally provided with Novell Netware. See their man pages for additional
information.

Some more nifty tools provided by ncpfs are:

• nwrights, nwgrant, nwrevoke allow the modification of file access rights
like Unix's chmod)

• nsend sends a message to a user via the Novell server (note that if the
recipient is also using ncpfs, their computer must run kerneld to receive
the message)

• slist lists the Novell servers available on the network;
• nwpasswd changes the password of a user;
• pqlis lists the print queues available on a Novell server;
• nwuserlist lists the users logged into the server and their hardware

addresses
• ncopy copies files within a Novell server without sending them through

the network

A Use of ncpfs in Real Life:

My school, the Hebrew University High School in Jerusalem Israel
(www.leyada.jlm.k12.il) decided to go on-line about one year ago. We had a 60-
computer Novell network already up and running, and we dedicated one
DX4-100 for the job of Internet server. However, in many cases students and
teachers wanted (or were required) to write their own WWW pages. At first, that
person would write a page, and I would copy it to the Internet server manually.
This is a very clumsy solution that worked only at first, and it doesn't allow the
user to edit their pages.

At some point I found ncpfs. It was a very experimental project then, but it did
most of what I needed it to do. Right now, our Novell server
(freud.leyada.jlm.k12.il) is always mounted by our Linux Internet server
(www.leyada.jlm.k12.il) as /novell (a cron script checks that this is so, and
mounts the server if not). The httpd web server automatically looks for pages in
a specific directory inside the Novell hierarchy, which solves the problem. This

directory, say G:\WWW, contains our entire home page. When a student wishes
to create a home page, he requests that a directory be opened for him under
that directory, say G:\WWW\HOME\JOE. He receives Novell write permission to
that directory, and is able to edit HTML files with his favorite web editor. This
technique also allows everyone to use DOS and Windows to edit HTML files,
which in our case is what the Novell clients run. Therefore, a user edits an
HTML file through Windows and checks it with Netscape, while the page is LIVE,
since the Linux machine mounts the Novell server.

Shay Rojansky is a 17-year-old high school student and Computer Science
student at the Hebrew University of Jerusalem. He works in his high school as a
system administrator (mainly Linux) and in the CS institute at the Hebrew
University as a lab assistant. You can send him email at roji@cs.huji.ac.il.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/037/toc037.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

The “Virtual File System” in Linux

Alessandro Rubini

Issue #37, May 1997

This article outlines the VFS structure and gives an overview of how the Linux
kernel accesses its file hierarchy. The information herein refers to Linux 2.0.x
(for any x) and 2.1.y (with y up to at least 18).

The main data item in any Unix-like system is the “file”, and a unique path name
identifies each file within a running system. Every file appears like any other file
in the way it is accessed and modified: the same system calls and the same
user commands apply to every file. This applies independently of both the
physical medium that holds information and the way information is laid out on
the medium. Abstraction from the physical storage of information is
accomplished by dispatching data transfer to different device drivers.
Abstraction from the information layout is obtained in Linux through the VFS
implementation.

The Unix Way

Linux looks at its file system in the same way Unix does—adopting the concepts
of super block, inode, directory and file. The tree of files accessible at any time
is determined by how the different parts are assembled, each part being a
partition of the hard drive or other physical storage device that is “mounted” to
the system.

While the reader is assumed to be well acquainted with the concept of
mounting a file system, I'll detail the concepts of super block, inode, directory
and file.

• The super block owes its name to its heritage, from when the first data
block of a disk or partition was used to hold meta information about the
partition itself. The super block is now detached from the concept of data
block, but it still contains information about each mounted file system.
The actual data structure in Linux is called struct super_block and holds

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

various housekeeping information, like mount flags, mount time and
device block size. The 2.0 kernel keeps a static array of such structures to
handle up to 64 mounted file systems.

• An inode is associated with each file. Such an “index node” holds all the
information about a named file except its name and its actual data. The
owner, group, permissions and access times for a file are stored in its
inode, as well as the size of the data it holds, the number of links and
other information. The idea of detaching file information from file name
and data is what allows the implementation of hard-links—and the use of
“dot” and “dot-dot” notations for directories without any need to treat
them specially. An inode is described in the kernel by a struct inode.

• The directory is a file that associates inodes to file names. The kernel has
no special data structure to represent a directory, which is treated like a
normal file in most situations. Functions specific to each file system type
are used to read and modify the contents of a directory independently of
the actual layout of its data.

• The file itself is associated with an inode. Usually files are data areas, but
they can also be directories, devices, fifos (first-in-first-out) or sockets. An
“open file” is described in the Linux kernel by a struct file item; the
structure holds a pointer to the inode representing the file. file structures
are created by system calls like open, pipe and socket, and are shared by
father and child across fork.

Object Orientedness

While the previous list describes the theoretical organization of information, an
operating system must be able to deal with different ways to layout
information on disk. While it is theoretically possible to look for an optimum
layout of information on disks and use it for every disk partition, most
computer users need to access all of their hard drives without reformatting, to
mount NFS volumes across the network, and to sometimes even access those
funny CD-ROMs and floppy disks whose file names can't exceed 8+3 characters.

The problem of handling different data formats in a transparent way has been
addressed by making super blocks, inodes and files into “objects”; an object
declares a set of operations that must be used to deal with it. The kernel won't
be stuck into big switch statements to be able to access the different physical
layouts of data, and new file system types can be added and removed at run
time.

The entire VFS idea, therefore, is implemented around sets of operations to act
on the objects. Each object includes a structure declaring its own operations,
and most operations receive a pointer to the “self” object as the first argument,
thus allowing modification of the object itself.

In practice, a super block structure encloses a field struct super_operations

*s_op, an inode encloses struct inode_operations *i_op and a file encloses
struct file_operations *f_op.

All the data handling and buffering performed by the Linux kernel is
independent of the actual format of the stored data. Every communication with
the storage medium passes through one of the operations structures. The file
system type, then, is the software module which is in charge of mapping the
operations to the actual storage mechanism—either a block device, a network
connection (NFS) or virtually any other means of storing and retrieving data.
These modules can either be linked to the kernel being booted or compiled as
loadable modules.

The current implementation of Linux allows use of loadable modules for all file
system types but root (the root file system must be mounted before loading a
module from it). Actually, the initrd machinery allows loading of a module
before mounting the root file system, but this technique is usually exploited
only on installation floppies.

In this article I use the phrase “file system module” to refer either to a loadable
module or a file system decoder linked to the kernel.

This is in summary how all file handling happens for any given file system type,
and is depicted in Figure 1:

https://secure2.linuxjournal.com/ljarchive/LJ/037/2108f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/037/2108f1.large.jpg

• struct file_system_type is a structure that declares only its own name and
a read_super function. At mount time, the function is passed information
about the storage medium being mounted and is asked to fill a super
block structure, as well as loading the inode of the root directory of the
file system as sb->s_mounted (where sb is the super-block just filled). The
additional field requires_dev is used by the file system type to state
whether it will access a block device: for example, the NFS and proc types
don't require a device, while ext2 and iso9660 do. After the super block is
filled, struct file_system_type is not used any more; only the super block
just filled will hold a pointer to it in order to be able to give back status
information to the user (/proc/mounts is an example of such information).
The structure is shown in Listing 1.

Listing 1

• The super_operations structure is used by the kernel to read and write
inodes, write super block information back to disk and collect statistics (to
deal with the statfs and fstatfs system calls). When a file system is
eventually unmounted, the put_super operation is called—in standard
kernel wording “get” means “allocate and fill”, “read” means “fill” and “put”
means “release”. The super_operations declared by each file system type
are shown in Listing 2.

Listing 2

• After a memory copy of the inode has been created, the kernel will act on
it using its own operations. struct inode_operations is the second set of
operations declared by file system modules, and is listed below; they deal
mainly with the directory tree. Directory-handling operations are part of
the inode operations because the implementation of a dir_operations

structure would bring in extra conditionals in file system access. Instead,
inode operations that only make sense for directories will do their own
error checking. The first field of the inode operations defines the file
operations for regular files. If the inode is a fifo, a socket or a device-
specific file operation will be used. Inode operations appear in Listing 3;
note the definition of rename was changed in release 2.0.1.

Listing 3

• The file_operations, finally, specify how data in the actual file is handled:
the operations implement the low-level details of read, write, lseek and
the other data-handling system calls. Since the same file_operations

structure is used to act on devices, it also includes some fields that only
make sense for character or block devices. It's interesting to note that the
structure shown here is the structure declared in the 2.0 kernels, while 2.1

https://secure2.linuxjournal.com/ljarchive/LJ/037/2108f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/037/2108l1.html
https://secure2.linuxjournal.com/ljarchive/LJ/037/2108l2.html
https://secure2.linuxjournal.com/ljarchive/LJ/037/2108l3.html

changed the prototypes of read, write and lseek to allow a wider range of
file offsets. The file operations (as of 2.0) are shown in Listing 4.

Listing 4

Typical Implementation Problems

The mechanisms to access file system data described above are detached from
the physical layout of data and are designed to account for all the Unix
semantics as far as file systems are concerned.

Unfortunately, not all file system types support all of the functions just
described—in particular, not every type has the concept of “inode”, even
though the kernel identifies every file by means of its unsigned long inode
number. If the physical data accessed by a file system type has no physical
inodes, the code implementing readdir and read_inode must invent an inode
number for each file in the storage medium.

A typical technique to choose an inode number is using the offset of the control
block for the file within the file system data area, assuming the files are
identified by something that can be called a “control block”. The iso9660 type,
for example, uses this technique to create an inode number for each file in the
device.

The /proc file system, on the other hand, has no physical device from which to
extract its data and, therefore, uses hardwired numbers for files that always
exist, like /proc/interrupts, and dynamically allocated inode numbers for other
files. The inode numbers are stored in the data structure associated with each
dynamic file.

Another typical problem faced when implementing a file system type is dealing
with limitations in the actual storage capabilities. For example, how to react
when the user tries to rename a file to a name longer than the maximum
allowed length for the particular file system, or when she tries to modify the
access time of a file within a file system that doesn't have the concept of access
time.

In these cases, the standard is to return -ENOPERM, which means “Operation
not permitted”. Most VFS functions, like all the system calls and a number of
other kernel functions, return zero or a positive number in case of success, and
a negative number in the case of errors. Error codes returned by kernel
functions are always one of the integer values defined in <asm/errno.h>.

https://secure2.linuxjournal.com/ljarchive/LJ/037/2108l4.html

Dynamic /proc Files

I'd now like to show a little code to play with VFS, but it's quite hard to conceive
of a small enough file system type to fit in the article. Writing a new file system
type is surely an interesting task, but a complete implementation includes 39
“operation” functions.

Fortunately enough, the /proc file system as defined in the Linux kernel lets
modules play with the VFS internals without the need to register a whole new
file system type. Each file within /proc can define its own inode operations and
file operations and is, therefore, able to exploit all the features of the VFS. The
method of creating /proc files is easy enough to be introduced here, although
not in too much detail. “Dynamic /proc files” are so named because their inode
number is dynamically allocated at file creation (instead of being extracted
from an inode table or generated by a block number).

In this section we build a module called burp, for “Beautiful and
Understandable Resource for Playing”. Not all of the module will be shown
because the innards of each dynamic file are not related to VFS.

The main structure used in building up the file tree of /proc is struct

proc_dir_entry. One such structure is associated with each node within /proc,
and it is used to keep track of the file tree. The default readdir and lookup

inode operations for the file system access a tree of struct proc_dir_entry to
return information to the user process.

The burp module, once equipped with the needed structures, will create three
files: /proc/root is the block device associated with the current root partition, /
proc/insmod is an interface to load/unload modules without the need to
become root, and proc/jiffies reads the current value of the jiffy counter (i.e.,
the number of clock ticks since system boot). These three files have no real
value and are just meant to show how the inode and file operations are used.
As you see, burp is really a “Boring Utility Relying on Proc”. To avoid making the
utility too boring I won't give the details about module loading and unloading,
since they have been described in previous Kernel Korner articles which are
now accessible on the Web. The whole burp.c file is available as well from SSC's
ftp site.

Creation and destruction of /proc files is performed by calling the following
functions:

 proc_register_dynamic(struct proc_dir_entry \
 *where, struct proc_dir_entry *self);
 proc_unregister(struct proc_dir_entry *where, \
 int inode);

In both functions, where is the directory where the new file belongs, and we'll
use &proc_root to use the root directory of the file system. The self structure,
on the other hand, is declared inside burp.c for each of the three files. The
definition of the structure is reported in Listing 5 for your reference; I'll show
the three burp incarnations of the structure in a while, after discussing their
role in the game.

Listing 5

The “synchronous” part of burp reduces therefore to three lines within
init_module() and three within cleanup_module(). Everything else is dispatched
by the VFS interface and is “event-driven” inasmuch as a process accessing a file
can be considered an event (yes, this way to see things is unorthodox, and you
should never use it with professional people).

The three lines in ini_module() look like:

 proc_register_dynamic(&proc_root, \
 &burp_proc_root);

and the ones in cleanup_module() look like:

 proc_unregister(&proc_root, \
 burp_proc_root.low_ino);

The low_ino field is the inode number for the file being unregistered, and has
been dynamically assigned at load time.

But how will these three files respond to user access? Let's look at each of them
independently.

• /proc/root is meant to be a block device. Its “mode” should, therefore,
have the S_IFBLK bit set, its inode operations should be those of block
devices and its device number should be the same as the root device
currently mounted. Since the device number associated with the inode is
not part of the proc_dir_entry structure, the fill_inode field must be used.
The inode number of the root device will be extracted from the table of
mounted file systems.

• /proc/insmod is a writable file. It needs its own file_operations to declare
its “write” method. Therefore, it declares its inode_operations that points
to its file operations. Whenever its write() implementation is called, the file
asks kerneld to load or unload the module whose name has been written.
The file is writable by anybody. This is not a big problem as loading a
module doesn't mean accessing its resources and what is loadable is still
controlled by root via /etc/modules.conf.

https://secure2.linuxjournal.com/ljarchive/LJ/037/2108l5.html

• /proc/jiffies is much easier; the file is read-only. Kernel versions 2.0 and
later offer a simplified interface for read-only files: the get_info function
pointer, if set, will be asked to fill a page of data each time the file is read.
Therefore, /proc/jiffies doesn't need its own file operations nor inode
operations; it just uses get_info. The function uses sprintf() to convert the
integer jiffies value to a string.

Listing 6

The snapshot of a tty session in Listing 6 shows how the files appear and how
two of them work. Listing 7, finally, shows the three structures used to declare
the file entries in /proc. The structures have not been completely defined,
because the C compiler fills with zeroes any partially defined structure without
issuing any warning (feature, not bug).

Listing 7

The module has been compiled and run on a PC, an Alpha and a Sparc, all of
them running Linux version 2.0.x

The /proc implementation has other interesting features to offer, the most
notable being the sysctl interface. This idea is so interesting, and it will need to
be covered in a future Kernel Korner.

Interesting Examples

My discussion is now finished, but there are many places where interesting
source code is available for viewing. Implementations of file system types worth
examining:

• Obviously, the “/proc” file system: it is quite easy to look at, because it is
neither performance-critical nor particularly fully featured (except the
sysctl idea). Enough said.

• The “UMSDOS” file system: it is part of the mainstream kernel and runs
piggy-back on the “Ms-DOS” file system. It implements only a few of the
operations of the VFS to add new capabilities to an old-fashioned file
system format.

• The “userfs” module: it is available from both tsx-11 and sunsite under
ALPHA/userfs; version 0.9.3 will load to Linux 2.0. This module defines a
new file system type which uses external programs to retrieve data;
interesting applications are the ftp file system and a read-only file system
to mount compressed tar files. Even though reverting to user programs to
get file system data is dangerous and might lead to unexpected
deadlocks, the idea is quite interesting.

https://secure2.linuxjournal.com/ljarchive/LJ/037/2108l6.html
https://secure2.linuxjournal.com/ljarchive/LJ/037/2108l7.html

• “supermount”: the file system is available on sunsite and mirrors. This file
system type is able to mount removable devices like floppies or CD-ROMs
and handle device removal without forcing the user to umount/mount the
device. The module works by controlling another file system type while
arranging to keep the device unmounted when it is not used; the
operation is transparent to the user.

• “ext2”: the extended-2 file system has been the standard Linux file system
for a few years now. It is difficult code, but worth reading for those
interested in seeing how a real file system is implemented. It also has
hooks for interesting security features like the immutable-flag and the
append-only-flag. Files marked as immutable or append-only can only be
deleted when the system is in single-user mode, and are therefore
secured from network intruders.

• “romfs”: this is the smallest file system I've ever seen. It was introduced in
Linux-2.1.21. It's a single source file, and it's quite enjoyable to browse. As
its name asserts, it is read-only.

is a wild soul with an attraction for source code. He is a fan of Linus Torvalds
and Baden Powell and enjoys the two communities of volunteer workers they
have attracted. He can be reached at rubini@linux.it.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/037/toc037.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Tips from The Answer Guy

James T. Dennis

Issue #37, May 1997

Learn how to block mail your mail and tighten your security from The Answer
Guy.

Netscape Mail Block

I need to refuse to accept e-mail from a particular person. How can I configure
Netscape and/or CND1.0 to bounce the person's mail back to them? —Mitch,
Mobile, Alabama

And the Answer Is...

I'd use procmail, a little programming language written specifically for
processing mail. CND uses procmail as the “local delivery agent” by default. This
means that sendmail passes any mail for a local account to procmail, and then
lets procmail do the final delivery to your mail box, /var/spool/mail/
your_login_name. At the same time, procmail checks for a .procmailrc file in
your home directory, and does some ownership and permissions checks on it
for you.

The author of a .procmailrc file can specify a variety of settings and clauses
which are called “recipes”, and can also modularize the file by using a variety of
INCLUDE directives. Here's a simple example that should get you started:

:0 hr
* ^From.*spammer.you.despise@spamhaven.com
* !^FROM_MAILER
* !^FROM_DAEMON
* !^X-Loop: ${USERNAME}i@`hostname`"
| (formail -r -A"X-Loop:
${USERNAME}@`hostname`" \
-A"Precedence: junk";\
 echo "Your mail is not welcome here."\
 echo "Please don't mail me again."\
 echo\
 cat ~/your.signature.or.flame
)

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

The :0 marks this as a new recipe—each new recipe starts with this line. The h
and the r on that line are flags tell procmail which parts of the message to hand
to your action line (i.e., the one that starts with a pipe, |).

• h says: “Give me the header.”
• r says: “Treat the incoming data as raw.”

The r flag is given to prevent your response from failing if the sender has failed
to put a blank line at the end of his message.

The following four “star” lines in the script are conditions. The first specifies that
the header will show that the message is “from” your spammer, that is, your
unwanted sender. This address will exactly match any “from” or “From:” line
that contains your target e-mail address. The next two lines of the script ensure
that you don't respond to daemons and mailers (mailing lists). The last * line,
which you should fill in with your user name and host name, ensures that your
don't respond to your own response. Those three conditions are included to
protect your script from being tricked into undesirable actions. Consider them
to be the minimum overhead on any auto-responders that you write.

The next line of the script, which starts with a “|” pipe character, describes the
action to take. In procmail there are three types of actions:

1. A file name specifies an mbox (elm, pine or mailx compatible) folder in
which to store the message.

2. A directory name specifies an mh or mmdf folder for mail storage. mh

and mmdf use different naming schemes for the messages in their folder
directories, but you don't need to worry about this difference unless you
use one of their mail user agents.

3. A ! (bang) line specifies an e-mail address to which the message is to be
bounced. A | (pipe) line specifies that the message is to be filtered
through a local program.

formail is a program that comes with the procmail package. It “formats mail
headers”. This particular formail command formats a “reply” (-r) header, and
adds two additional header lines—a standard “Precedence: junk” line and a
personal “X-” line. The RFC822 spec allows you to use the X- line to embed
custom information into a header. It is also in the formail command line that
you prevent an attack by routing your response back into your own script, i.e., a
mail loop.

The echo and cat statements after the formail line provide output that is
appended after the mail header and that becomes the body of your response.

You can add additional echo lines or you can create a file and use cat to add it
here.

If you are new to procmail (which is almost certain given your question—auto-
responders are some of the first things that procmail users learn), you may be
nervous about breaking something and losing some of your mail. To protect
yourself you will want to start your .procmailrc with the following simple recipe:

:0 c
fallback

This recipe, if it is the first recipe in the script, appends a copy of every
incoming message to a file named fallback in your ~/Mail directory by default.
You can compare the contents of that folder to your inbox until you are
confident that everything is working as you expect.

Please read the procmail and procmailex (examples) man pages for more
details. The author, Stephen van der Berg, has also written an automated mail
list management package called SmartList that is highly regarded among
people that I know who have used it. I like SmartList much better than
Majordomo. —Jim

Dealing with E-mail on a POP3 Server

Is there any way (or any program out there) which will not only get my e-mail
from a POP3 server off of one account, but distribute it to multiple users on my
system by either the from: or subject: lines?

Perhaps popclient could get the mail and save to temp. Then a program could
go through the saved mail and say, “Hmmm, this mail is from
johndoe@linux.org and it goes to root—then the next message is from
mike@canoe.net and it goes to Dave.” Is there a program that will do this? —
Moe Green, starved@ix.netcom.com

And the Answer Is...

It is possible to write procmail scripts that can take this sort of action for you.
Although I don't recommend this approach, I'll tell you how to do it.

The current version of popclient is called fetchmail, because it supports IMAP
and some other mail store and forward protocols. The fetchmail default is to
fetch the mail from your POP or IMAP server and feed it to the smtpd
(sendmail) on your local host. This means that any special processing that
would be done by the aliases or .forward files (especially any processing
through procmail scripts) will be done automatically.

It is possible to override that feature and feed the messages through a pipe or
into a file. It is also possible, using procmail or any scripting language, to parse
and dispatch the file. Using anything other than procmail would require that
you know a lot about RFC822, the standard for Internet mail headers, and
about e-mail in general.

I wrote an article on procmail that appears in February's Linux Gazette, Issue
14. The gist of it is also available on my own mail server, and can be obtained
by sending mail to info@starshine.org with a subject of procmail or mailbot.

The reason I don't recommend using procmail in this way is that it violates the
intentions and design of Internet e-mail. A better solution is to find a provider
of UUCP (Unix-to-Unix CoPy) services or at least SMTP/MX (Simple Mail Transfer
Protocol) services. UUCP is the right way to provide e-mail to disconnected
(dial-up) hosts and networks. It was designed and implemented over 25 years
ago, and all of the mail systems on the Internet know how to gateway to UUCP
sites.

As for SMTP/MX services for disconnected hosts/networks, there are various
ways of hacking sendmail and DNS (Domain Name Service) configurations that
have been developed in the last few years with a variety of shell scripts and
custom programs to support them. All of these methods provide essentially the
same services as mail via UUCP over TCP but do not conform to any standard,
which means that whatever you learn and configure with one ISP probably
won't work with the next one. —Jim

Security Problem

Recently a cracker got into my Linux system on the Internet. He didn't do a lot
of damage, but I guess he did turn off system logging, since I couldn't see what
he'd done. Now I can't get it working again. Here's what I've done so far:

1. I've made sure that the syslogd program is running using ps.
2. I've read the syslogd.conf file to make sure it's logging everything, and

where it's going to.
3. I've checked permissions on the log file.
4. I did a kill -HUP on the syslogd process, and it writes restart to the log.
5. logger does nothing when I run it (no log entry, no error).
6. All my C programs that wrote to syslog don't anymore.

Anyone have any good ideas what to do from here? —
Jayjay@shadow.ashpool.com

And the Answer Is...

I do, but they are rather too involved for me to type up tonight. However, I
highly recommend that you reinstall the OS and all binaries from scratch
whenever you think root has been compromised on your system. I realize this
is a time-consuming proposition, but it is the only way to truly be sure.

I also recommend the program tripwire that can be found at ftp.cs.perdue.edu
in the COAST archive, and its mirrors.

Please feel free to write me at jimd@starshine.org if you continue to have
system security problems.

Sorry to take so long to respond. I've been literally swamped all month. —Jim

More on Security

I found that the cracker had replaced my syslogd with a packet sniffer. I think
he had copied the syslogd code and replaced parts of it with his sniffer. It
seemed to have some functionality but not a lot...

I also found a SUID version of bash in my /tmp directory. My thought is this is
the way he originally got root access. —Jay

Not too surprising. He was probably using a rootkit; however, he obviously
didn't do a very good job of covering his tracks. You should consider all
passwords for all of the systems on the local net to be compromised. Force
password changes across the board and consider installing ssh or stelnet. Both
are secure, encrypted replacements to rlogin/rsh and telnet respectively.

He probably got in through the “Leshka” sendmail bug that allows any shell
user to create a root-owned SUID shell in /tmp/ on any system that has an SUID
root copy of sendmail (version ~8.6.x to 8.7.x ?). The bug involves sendmail's
handling of ARGV[0] and it's subsequent SIGHUP (signal to disconnect)
handling. Everyone using earlier versions of sendmail should upgrade to 8.8.3
or later (see http://www.sendmail.org/ for details).

How important are this system and the other systems on the same LAN
segment to your business? I'd seriously consider hiring a qualified consultant
for a full day risk assessment and audit. Unfortunately, you'll probably pay at
least $125/hr for anyone that's worth talking to, and many of the “security
consultants” out there are snake oil salesmen, so beware. —Jim

This article was first published in Issue 14 of LinuxGazette.com, an on-line e-
zine formerly published by Linux Journal.

Jim Dennis is the proprietor of Starshine Technical Services. His professional
experience includes work in technical support, quality assurance and
information services (MIS) for software companies like Quarterdeck, Symantec/
Peter Norton Group and McAfee Associates—as well as positions with smaller
VARs. He's been using Linux since version 0.99p10 and is an active participant
on an ever-changing list of mailing lists and newsgroups. He's just started
collaborating on the 2nd Edition for a book on Unix systems administration. Jim
is an avid science fiction fan—and recently got married at the World Science
Fiction Convention in Anaheim

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/037/toc037.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

New Products

M. L. Richardson

Issue #37, May 1997

NetAcquire 3000 Server, Telaxian Shield Firewall System, Willows RT for
Tornado and more.

NetAcquire 3000 Server

Real Time Integration, Inc. announced Unix drivers for the NetAcquire 3000, a
network data acquisition server, that acquires, processes and updates real-time
analog data at over 750,000 samples/second using a standard Ethernet
network to communicate. While an off-the-shelf Linux release is not yet
available, it is designed to compile under Linux. The NetAcquire 3000 model is
priced at $8495.

Contact: Real Time Integration, Inc.,7914 140 Pl. NE, Redmond, WA 98052-4180,
Phone: 206-883-7563, Fax: 206-883-0463, E-mail: realtimeint@realtimeint.com,
URL: http://www.realtimeint.com/.

Telaxian Shield Firewall System

Network Engineering Technologies, Inc. (N.E.T.) announced Telaxian Shield, a
firewall system capable of mirroring the organizational and geographical
structure of an entire enterprise. The Telaxian Shield is priced from $7,995 to
$11,995, depending on the specific configuration. It is available for Linux.

Contact: Network Engineering Technologies, 1714 Ringwood Ave., San Jose,
California 95131, Phone: 408-453-7500, Fax: 408-437-0651, URL: http://
www.fireants.com/.

Willows RT for Tornado

Wind River Systems and Willows Software, Inc. introduce Willows RT for
Tornado, a new solution for bringing standard Windows software to the real-
time embedded market. Products developed using Willows RT are portable

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

across a wide range of microprocessors including Linux. It is available for $6500
for a single-seat license.

Contact: Wind River Systems, Inc., Alameda, CA 94501, Phone: 800-545-WIND, E-
mail: inquiries@wrs.com, URL: http://www.wrs.com/.

Microway Alpha-based Workstations

Microway announced 500 MHz Screamer workstations with 2MB of
synchronous SRAM cache. These desktop supercomputers utilize DEC's latest
Alpha technology, plus Microway-engineered motherboards and positive
pressure SIMM cooling for workstations containing 128MB or more of memory.
Also available is Microway's ported and maintained version of Linux for the
Alpha. For pricing, contact Microway.

Contact: Microway, P.O. Box 79, Kingston, MA 02364, Phone: 508-746-7341, Fax:
508-746-4678, URL: http://www.microway.com/.

SpellCaster Telecommute/BRI

SpellCaster Telecommunications, Inc. today announced the TeleCommute/BRI,
a high-performance, intelligent ISDN Basic Rate (BRI) terminal adapter card for
ISA bus personal computers. It is a complete high-speed data and voice
communications solution. It is available for $573.

Contact: SpellCaster Telecommunications Inc., Toronto, Canada, Phone:
800-238-0547, E-mail: jdw@spellcast.com, URL: http://www.spellcast.com/.

NovaLink e.prise

NovaLink USA Corp. announced e.prise, an environment for creating and
managing web sites for the Internet and Intranet. The basis of the technology is
a sophisticated object-oriented content database and user-friendly design.
NovaLink's e.prise is available for Linux. Pricing is dependent on number of
licenses.

Contact: NovaLink USA Corp., 200 Friberg Parkway, Westborough, MA 01581,
Phone: 508-898-2000, Fax: 508-836-4766, E-mail: amazing@novalink.com, URL:
http://www.novalink.com/.

PanGlot Multi-lingual E-mail Editor for Linux

PanGlot Software announces the availability of its Linux multi-lingual e-mail
editor. With this editor it is possible to use up to seven languages/alphabets
simultaneously in a single document. Each language/alphabet has its own
individualized keyboard map. Others can be loaded from disk as required. The

FREE e-mail reader can be downloaded from Sunsite or our home page; the
$25.00 mailer can be ordered from PanGlot Software .

Contact: PanGlot Software, 6430 North Strahan, El Paso, TX 79932, Phone:
416-297-1927, E-mail: stermole@panglot.com, URL: http://www.panglot.com/.

Reactor 4.1

Critical Mass, Inc. announced Reactor 4.1, the Distributed Application
Development Environment. Reactor allows your distributed applications to
seamlessly cross Linux/ELF and Win32. It will allow Linux developers to build
robust applications targeted for Windows NT and Windows 95, as well as other
Unix platforms.

Contact: Critical Mass, Inc., Cambridge, MA, Phone: 617-354-6277, E-mail:
farshadi@cmass.com, URL: http://www.cmass.com/reactor/.

Network Technologies Video Switch

Network Technologies Inc. announced a new line of video switches which allow
two computers on different platforms to share the same monitor. The SE-SPV-2
allows a PC and a Sun workstation to share a monitor and retails for $280. Each
of the available switches comes with a one year warranty, and has an optional
remote RMT-2-ST.

Contact: Network Technologies Inc., 1275 Danner Dr., Aurora, OH 44202,
Phone: 800-742-8324, E-mail: sales@networktechinc.com, URL: http//
www.networktechinc.com/.

FrontPage Server Extensions for Linux

Ready-To-Run Software announced the availability of Microsoft FrontPage
Server Extensions for a wide range of Unix web servers including Linux.
FrontPage is a web authoring and management tool. For pricing information
contact Ready-To-Run Software.

Contact: Ready-To-Run Software, 4 Pleasant St., P.O. Box 2038, Forge Village,
MA 01886-5038, Phone: 508-692-9922, Fax: 508-692-9990, E-mail: info@rtr.com,
URL: http://222.rtr.com/.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/037/toc037.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Best of Technical Support

Various

Issue #37, May 1997

Our experts answer your technical questions.

Netscape On MkLinux

I have installed MkLinux on my Mac 6100. I log in and ftp Netscape. When I try
to run the executable I get an error message saying I can't run the binary. —
Manny Duarte

No MkLinux Binary

As far as I know, Netscape does not support MKLinux. The binary they supply
for Linux is compiled for Intel CPUs. It will not work on a Mac. —Bob Hauck,
Wasatch Communications Group bobh@wasatch.com

Terminating pppd

I am running kernel 1.2.13 and pppd 2.1.2 on a remote machine and kernel
2.0.18 and pppd 2.2.0 on a local machine to connect to the remote machine by
modem. When the modem drops carrier (due to line noise, etc.) the remote
pppd process remains active, preventing getty accepting any more connections
until pppd is killed.

Is it possible to have the remote pppd terminate automatically when the
modem drops the carrier? —Eskinder Mesfin

Running pppd Manually

The modem option does exactly that, assuming that your modem is set up to
have the DCD signal follow the carrier state and that your cables pass all of the
relevant signals through to the serial port. Most modems will operate DCD in
the desired mode if you include AT&C1 in the init string.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

However, if you are manually running pppd on the remote machine after
logging in to a shell, there is a caveat. In that case you need to exec pppd rather
than simply running it.

If you just run pppd from the command line, the shell, rather than the pppd
process, will get the SIGHUP signal when you hang up. The shell will terminate
but leave the pppd daemon running. Instead, do exec pppd. This will replace
the running shell with pppd so that the hang-up signal will work correctly. —
Bob Hauck, Wasatch Communications Group bobh@wasatch.com

Generating RARP Requests

I need to set up a large number of Linux boxes as X-terminals. I would like to
automate the addressing of these boxes through RARP, preferably. I have had
little trouble learning how to make a Linux box answer RARP queries, but I can't
seem to make it generate one. Any help you could offer would be appreciated.
—George

Enabling RARP

The kernel can do it. You can boot a kernel, have it generate a RARP request,
and then use the machine that answers as an NFS server. It can do the same
using the BOOTP protocol as well. These options must be enabled during the
make config of the kernel.

I suspect what you want is something like what a Sun workstation does, which
is to get a kernel from the network starting with a RARP request. That kind of
thing can be done only with special ROMs available only for certain Ethernet
cards. You can likely find information at http://sunsite.unc.edu/linux. I
recommend using small hard disks or booting a kernel from floppy to an NFS
server. It is much easier to work with. —Donnie Barnes, Red Hat Software
redhat@redhat.com

Plug and Play Modems

I used Windows 95 before Linux; that's why I got a plug and play modem. It
works with Windows 95 but it does not work in Linux. Why? —Stou Sandalski

Two Types of Plug and Play

There are two different types of internal modems that fall into the plug and
play category. The first is a standard modem that is simply configured at boot
time to determine what COM port it will provide. The second is called a
WinModem.

A WinModem does not have a UART, which is what makes a normal serial port
tick. Instead, they knock down the price of the modem by $10-$20 and
eliminate this normally necessary component of any serial port or modem. It is
replaced with a software driver that emulates the UART's functionality.

If you have, or think you have, such a modem, your only hope would be to ask
the manufacturer whether they support Linux for that modem. If not, the
modem cannot be used under Linux. If you do not have a WinModem, you
should be fine, provided you set the modem up correctly.

No two modems are identical. Your best bet is to consult the manufacturer. In
most cases, if you do not have a product that will work under Linux, they will
provide an upgrade at a very low cost. —Chad Robinson, BRT Technical Services
Corporationredhat@redhat.com

Users Cannot Change Password

I have installed shadow-ina-box-1.2 and all the accounts that I created after the
installation get the following error when they try to change their password:

homepage:~$passwd
Changing password for user_name
The password for user_name cannot be changed

Is there a solution to this or will I have to revert to an open password file? —
Mike Pelley

Changing Permissions

I'd guess that one of two things is happening here. Either your passwd binary
doesn't have the right permissions, or you are still using your old non-shadow
passwd binary.

In order for passwd to make changes to the passwd file, it must be suid root. To
check this, try doing ls -l `which passwd`. It should print something like this:

-r-s--x--x 1 root bin 3152 May 4 1994 /usr/bin/passwd

The important things are the s in the first column and the root in the third
column. If you don't see the s, do a chmod u+s `which passwd` as root. If the
file isn't owned by root (the root in the third column), do chown root `which

passwd`.

Before you do all of that though, double check that what you are running really
is the binary that shadow-ina-box installed. Do which passwd and make sure

that's the right passwd binary. —Steven Pritchard, Southern Illinois Linux Users
Group stever@silug.org

Converting Text To PostScript

I print over a network setup. My problem is that when I print text files I cannot
control the font size, and lines are cut off at the end. Is there any utility that will
help me convert a text file to PostScript in any font size, because I have no
problem printing PostScript. —Eskinder Mesfin

Multiple Solutions

GNU enscript is a drop-in replacement for the enscript program. Enscript
converts ASCII files to PostScript and writes the generated output to a file or
sends it directly to the printer.

It is available from: prep.ai.mit.edu:/pub/gnu/enscript-1.4.0.tar.gz. —Rory
Toma, WebTV Networks rory@corp.webtv.net

The nenscript program does what you want. It has numerous options to control
the font, paper size, lines per page, number of copies, and so forth.

You might want to look into the magicfilter utility. This is a nifty little program
that allows you to transparently print almost any kind of file to any reasonable
printer. It installs as a print filter and uses some heuristics to determine the file
type and work accordingly. I got my copy from Sunsite. —Bob Hauck, Wasatch
Communications Group bobh@wasatch.com

Try the apsfilter (aps 4.9.1) available on every linux-mirror. —Klaus Franken,
S.u.S.E. GmbHkfr@suse.de

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/037/toc037.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

	Features
	News & Articles
	Reviews
	WWWsmith
	Columns
	Linux on the PS/2
	David Weis

	Linux/m68k: Linux on Motorola's 68000 Processor
	Chris Lawrence

	Native Linux on the PowerPC
	Cort Dougan
	Where PowerPC Linux Is Now
	Where PowerPC Linux Is Going
	Getting Involved

	Linux? On the Macintosh? With Mach?
	Victoria L. Brown
	Why Power Macintosh?
	What Is MkLinux?
	A Mach Primer
	The MkLinux Server
	Linux Goodies
	GNU... And Apple?!?
	What About Intel?
	Nitty Gritty Details
	The History and the Team
	You Can Join Our Team!

	Tcl/Tk with C for Image Processing
	Siome K. Goldenstein
	A Practical Example: Let's Dither
	Image in Tk
	Tcl/Tk as an Interface for Your C
Programs
	Calling C Functions from Tcl
	Passing Images Back and Forth
	About the Program
	An Important Remark about C and Tcl/Tk
Interaction
	Conclusions

	Internet Servers in Perl
	Mike Mull

	An Interview with DEC
	David Rusling
	Jon Hall
	maddog:
	David Rusling:
	maddog:
	David Rusling:
	maddog:
	David Rusling:
	maddog:
	David Rusling:
	maddog:
	David Rusling:
	maddog:
	David Rusling:
	maddog:
	David Rusling:
	maddog:
	David Rusling:
	maddog:

	Safely Running Programs as root
	Phil Hughes

	LJ Interviews Przemek Klosowski
	Marjorie Richardson
	Lydia Kinata
	Przemek Klosowski

	Python Update
	Andrew Kuchling

	FairCom's c-tree Plus
	Nick Xidis
	The Basics
	How to Use ISAM with c-tree Plus
	A Mode for Every Occasion
	The Installation
	Conclusion

	Relinking a Multi-Page Web Document
	Jim Weirich
	Identifying Links
	The LINKS File
	Summing Up

	Missing CGI.pm and Other Mysteries
	Reuven M. Lerner
	Where Is CGI.pm?
	Guestbook Problems
	Individual Users and CGI Directories
	Permissions for CGI Programs

	World Wide Web Journal
	Danny Yee

	Letters to the Editor
	Various
	Code Examples
	Acronym Use
	Linux in Schools
	Red Hat Install Problems
	Shopping for Linux
	On-line Linux Users Group
	AutoMount Article Comment
	Larry Wall Article Comment
	Another Algorithm for Polygons

	Changes at LJ
	Marjorie Richardson
	A Couple of News Items
	This Month
	Next Month

	Linux and Web Browsers
	Phil Hughes
	The Lights Come On
	More Players

	Connecting SSC via Wireless Modem
	Liem Bahnemann
	How Wireless Modems Work
	Configuration
	Getting the Modems Talking

	Paths
	Lynda Williams
	Starting at Home
	Puzzling Nomenclature
	Relative paths
	Building with Paths

	ncpfs—Novell Netware Connectivity for Linux
	Shay Rojansky
	How to Use NCPFS
	A Use of ncpfs in Real Life:

	The “Virtual File System” in Linux
	Alessandro Rubini
	The Unix Way
	Object Orientedness
	Typical Implementation Problems
	Dynamic /proc Files
	Interesting Examples

	Tips from The Answer Guy
	James T. Dennis
	Netscape Mail Block
	And the Answer Is...
	Dealing with E-mail on a POP3 Server
	And the Answer Is...
	Security Problem
	And the Answer Is...
	More on Security

	New Products
	M. L. Richardson
	NetAcquire 3000 Server
	Telaxian Shield Firewall System
	Willows RT for Tornado
	Microway Alpha-based Workstations
	SpellCaster Telecommute/BRI
	NovaLink e.prise
	PanGlot Multi-lingual E-mail Editor for
Linux
	Reactor 4.1
	Network Technologies Video Switch
	FrontPage Server Extensions for Linux

	Best of Technical Support
	Various
	Netscape On MkLinux
	No MkLinux Binary
	Terminating pppd
	Running pppd Manually
	Generating RARP Requests
	Enabling RARP
	Plug and Play Modems
	Two Types of Plug and Play
	Users Cannot Change Password
	Changing Permissions
	Converting Text To PostScript
	Multiple Solutions

